Non-biostratigraphical Methods of Dating and Correlation
Non-biostratigraphical Methods of Dating and Correlation

EDITED BY

R. E. DUNAY
Mobil North Sea Ltd,
London

AND

E. A. HAILWOOD
Core Magnetics,
Sedbergh, Cumbria

1995
Published by
The Geological Society
London
THE GEOLOGICAL SOCIETY

The Society was founded in 1807 as The Geological Society of London and is the oldest geological society in the world. It received its Royal Charter in 1825 for the purpose of 'investigating the mineral structure of the Earth'. The Society is Britain's national society for geology with a membership of 7500 (1993). It has countrywide coverage and approximately 1000 members reside overseas. The Society is responsible for all aspects of the geological sciences including professional matters. The Society has its own publishing house which produces the Society's international journals, books and maps, and which acts as the European distributor for publications of the American Association of Petroleum Geologists and the Geological Society of America.

Fellowship is open to those holding a recognized honours degree in geology or cognate subject and who have at least two years' relevant postgraduate experience, or who have not less than six years' relevant experience in geology or a cognate subject. A Fellow who has not less than five years' relevant postgraduate experience in the practice of geology may apply for validation and, subject to approval, may be able to use the designatory letters C. Geol (Chartered Geologist).

Further information about the Society is available from the Membership Manager, The Geological Society, Burlington House, Piccadilly, London W1V 0JU, UK.
Contents

Dunay, R. E. & Hailwood, E. A. Non-biostratigraphical methods of dating and correlation: an introduction 1

Morton, A. & Hurst, A. Correlation of sandstones using heavy minerals: an example from the Statfjord Formation of the Snorre Field, northern North Sea 3

Mange-Rajetzky, M. A. Subdivision and correlation of monotonous sandstone sequences using high-resolution heavy mineral analysis, a case study: the Triassic of the Central Graben 23

Jeans, C. V. Clay mineral stratigraphy in Palaeozoic and Mesozoic red bed facies, onshore and offshore UK 31

Carter, A., Bristow, C. S. & Hurford, A. J. The application of fission track analysis to the dating of barren sequences: examples from red beds in Scotland and Thailand 57

Racey, A., Love, M. A., Bobolecki, R. M. & Walsh, J. N. The use of chemical element analyses in the study of biostratigraphically barren sequences: an example from the Triassic of the central North Sea (UKCS) 69

Pearce, T. J. & Jarvis, I. High-resolution chemostratigraphy of Quaternary distal turbidites: a case study of new methods for the analysis and correlation of barren sequences 107

Roberts, J., Claoue-Long, J., Jones, P. J. & Foster, C. B. SHRIMP zircon age control of Gondwanan sequences in Late Carboniferous and Early Permian Australia 145

Russell, J. Direct Pb/Pb dating of Silurian macrofossils from Gotland, Sweden 175

Dalland, A., Mearns, E. W. & McBride, J. J. The application of samarium–neodymium (Sm–Nd) Provenance Ages to correlation of biostratigraphically barren strata: a case study of the Statfjord Formation in the Gullfaks Oilfield, Norwegian North Sea 201

Rendell, H. M. Luminescence dating of Quaternary sediments 223

Yang, C.-S. & Kouwe, W. F. P. Wireline log-cyclicity analysis as a tool for dating and correlating barren strata: an example from the Upper Rotliegend of The Netherlands 237

Index 263