accretionary prisms, 257, 277–8
accretionary wedges, 4, 5, 9, 11, 12
Acoje ophiolite, 20
Aegean arc, south, 213, 225, 226
Aegean area, 214, 219, 220, 225
extension in, 222, 224, 226–8
igneous activity, 219–224
Aegean islands, volcanoes 213, 215
Aegean microplate, 213, 226
Aegean plate, 226
Aegean Sea, 213, 215
extension, 213, 227, 228
Aegean Trough, 224, 228
Aegina, 221
Aeolian arc, 257, 260
African plate, 213, 226
airfall ash deposits, 34
Lau Basin, 34, 36–7, 38, 46, 47, 48, 49
Tonga platform, 39
Akita–Yamagata oil field, 177
Albian basin, 237
Albian deposystems, 244
Aleutian arc, 12, 111, 251
Aleutian Islands, 11
basalts, 83, 84, 86
Aleutian–Alaskan arc, 15
Alligator Lake maar basalts, 81
Almopias Basin, 224
Alpine fault, 19
Altiplano, 11
Ambae volcano, 137
Ambrym caldera, 137, 138–9
Ambrym Island, 138, 139
Ambrym Pyroclastic Series (APS), 138–9, 146, 147, 148, 152
Ambrym volcano, 136, 152–3
characteristics, 138–9
genesis of magmas and origin of K and La contents, 147–9, 152
geochemistry, 140–3, 144–51
magma evolution trends, 147
magmatic evolution of the volcano, 152
seismo-tectonic setting, 137–8
Americas, Pacific margin, 268
Anatolia, volcanoes, 215, 224
Anatolian plate, motion of, 226
Andaques, 237, 238
Andean continental margin, 233
Andean Cordillera, 245
Andean cycle, 233, 240
Andean volcanic zones, 238
Andes, 11–12, 233, 242, 245, 256, 257
see also Calipuy Group; Casma Basin; Yungay volcanic rocks
Anorthosite–norite complexes, 20
Antarctic Peninsula, 268, 269
geochemistry, 271, 272–6
melt production, 276–82
slab windows, 268–70, 273, 282
syn-subduction magmatism, 270, 272
Antarctic plate, 11
Anvers fracture zone, 272
Aoba Basin, 136, 137
Apulia plate, 226
Arabian–Anatolian plate collision, 226
arc evolution, 13–14
arc extension, 12–13
arc magmas, origin of, 21
arc migration, 12–13
arc protomelts, 21–2
arc rifting, 29
arc-front basalts, identification of, 206
arc-ophiolite crustal sections, 20
Archean tectonics, 23
Arctic ocean, size increase, 5
Argolis, 224, 226
asthenospheric upwelling, 33, 95, 185, 222, 228, 267, 277, 279
into thinspots, 280, 281, 282
record of, 224
Ata volcano, 46
Atimbia cone, 79
Atlantic ocean, size increase, 5
Australian plate, 137
back-arc basin basalts, identification, 206
back-arc extension, 12
back-arc spreading centres, see Central Lau Spreading Centre; Eastern Lau Spreading Centre
Baegdusan volcano, 171, 172
Baja, California, 268, 270
Baldwin Formation, 159
Balmuccia peridotite, 18
Banda–Java–Sumatra arc, 15
Barry, 160, 161, 162
basement high, 9
basic dykes, 101, 102, 104, 107, 110, 111
Bataan segment, Taiwan–Luzon arc, 78, 83, 85
bathymetric trenches, 4
Bay of Plenty, 194, 200–1, 202, 203
Belaya River Graben, 252–3
Benbow cone, 137, 138, 139, 144
Benioff seismic zone, 5, 213, 220, 233
Benioff–Wadati zone, 77, 78, 91
Bering Fracture Zone, 251
Bicol arc, 79, 89
blebs, 102
Bonin arc, 33
Bonin Islands, 115
Bonin Trench, 115
boninitic lavas, 117, 128–9, 131–2
Bransfield Strait, 237, 244, 270, 281
British Columbia, 268
brittle crustal faults, 228, 239
Bulgaria, 224, 257
Bulgugsa granites, 177
INDEX

decompression melting, 89, 185, 228, 266, 277, 279, 282
deforation of overriding plates, 7, 9
delamination, 20–1, 23
D’Entrecasteaux Zone (DEZ), 136, 137, 138, 148, 152–3
DUPAL component, 65
dupal-type anomaly, Bonin islands, 126
dyke swarm, Yavuna Group, 101–4, 106, 108, 111, 112
deformation of overriding plates, 7, 9
delamination, 20–1, 23
D’Entrecasteaux Zone (DEZ), 136, 137, 138, 148, 152–3
DUPAL component, 65
dupal-type anomaly, Bonin islands, 126
dyke swarm, Yavuna Group, 101–4, 106, 108, 111, 112
earth
early, 22–3
rotation motion as cause of plate motion, 4
earthquakes, 12
Ambrym area, 137
within accretionary wedges, 12
East Pacific Rise, 66
Eastern China, basalts, 171
Eastern Cordillera, 11
Eastern Lau Spreading Centre (ELSC), 31, 47, 48, 50, 53, 54
geochemical correlation with ridge distance, 68–72
geochemical correlation with ridge segmentation, 55–6, 66–8
geochemistry, 56–66, 68–9, 72
tectonic setting, 33
Cheju Island, 170, 171, 172, 177
basalts, 179
Chichijima, 117, 125, 126, 129
Chichijima Mikazuki yama Formation, 128, 131
Chilas complex, 17
Chile, 11, 12, 233, 236, 244
Chios Island, 214, 224, 228
geochemistry, 217–19, 220, 221
geological setting of volcanics, 215
petrography, 215
petrological affinities of rocks, 224–6
Chugaryeong Graben, 170, 171, 172, 177
Circum-Pacific subduction reversal, 14
Clark volcano, 194, 195
closed system fractionation, 128
Coastal Batholith, 235, 238, 240
collisions of plates, 13–14
Colo Plutonic Suite, 98, 99
Colville Knolls arc basement, 194, 195
composite dykes, 102
‘Conrad discontinuity’, nonexistent, 20
Cook–Austral–Samoa Islands, 275
Cordillera Blanca Batholith, 235, 240–1, 244
Cordillera Blanca fault, 234, 240
Cretan Sea, 224, 228
Crete, 226
crust–mantle interactions, 209
crust–mantle transition, seismic properties, 20
crust-thickening, 11–12, 244, 249, 251
crust-thinning, 282
crustal contamination, 19, 177, 208, 243, 244, 246,
249, 256, 257, 275
crustal material recycling, 21
crustal rifting, 16
Cyclades, 213, 215, 224
Dalahum cone, 138
carbon dioxide and melt production, 226, 265, 279
Caribbean region, inward subduction, 7
Casma Basin, 234–5, 237, 240, 249
geochemistry, 239, 242–4
tectonic setting, 235–7
Casma Group, 234, 238
central American–Mexican arc, 15
Central Lau Spreading Centre (CLSC), 31, 53, 54
geochemical correlation with ridge distance, 68–72
geochemical correlation with ridge segmentation, 55–6, 66–8
geochemistry, 56–66, 68–9, 72
tectonic setting, 33
Cheju Island, 170, 171, 172, 177
basalts, 179
Chichijima, 117, 125, 126, 129
Chichijima Mikazuki yama Formation, 128, 131
Chilas complex, 17
Chile, 11, 12, 233, 236, 244
Chios Island, 214, 224, 228
geochemistry, 217–19, 220, 221
geological setting of volcanics, 215
petrography, 215
petrological affinities of rocks, 224–6
Chugaryeong Graben, 170, 171, 172, 177
Circum-Pacific subduction reversal, 14
Clark volcano, 194, 195
closed system fractionation, 128
Coastal Batholith, 235, 238, 240
collisions of plates, 13–14
Colo Plutonic Suite, 98, 99
Colville Knolls arc basement, 194, 195
composite dykes, 102
‘Conrad discontinuity’, nonexistent, 20
Cook–Austral–Samoa Islands, 275
Cordillera Blanca Batholith, 235, 240–1, 244
Cordillera Blanca fault, 234, 240
Cretan Sea, 224, 228
Crete, 226
crust–mantle interactions, 209
crust–mantle transition, seismic properties, 20
crust-thickening, 11–12, 244, 249, 251
crust-thinning, 282
crustal contamination, 19, 177, 208, 243, 244, 246,
249, 256, 257, 275
crustal material recycling, 21
crustal rifting, 16
Cyclades, 213, 215, 224
Dalahum cone, 138
Gamilaroi terrane, 155, 156–7, 158, 159
accretion, 157–8
development, 162–6
gerochemy, 160–2
Gaua volcano, 137
Glenrock area, 156, 160, 162
Gondwana, 155, 157, 158, 164, 165, 166
granitic melts, 22
gravitational
break-up, 280
spreading, 11, 12, 22
subduction, 3
gravity flow sedimentation, 36, 38, 39, 48, 49
Greece, 213, 224, 226, 256, 257
see also Chios Island
Green Tuff Formation, 173
Gulf of Argolis, 224
Gulf of Corinth, 224
Gyeongsang Basin, 170, 171–2
Hahajima Island, 115, 116, 117, 129, 130, 131, 132
gerochemy, 120–8
petrography, 119–20
volcanic sequence, 117–19
Havre Trough, 193, 194, 206
geochemy, 198, 199, 202, 203, 204–5, 208, 209
geological setting, 195
heat loss, mode of, 3, 23
Heezen fracture zone, 269
Hellenides, 226
hinge rollback, 5, 7
Hispaniola, 11
Hokuriku–Saninoki rift, 173
Honshu, 7, 9, 11
p-wave anomalies, 8, 9
hotspots, 55, 266
Huarmey Basin, 234, 236, 237, 245
Huaura complex, 240
hydrous melting, 7, 72, 279, 282
incaic orogeny, Andes, 238–9
incremental batch melting, 148
Indian Ocean plate, 11
Indian–Australian plates, 29–30
inter-edifice volcanism, 108, 109–110, 111, 112, 113
Intermediate Lau Spreading Centre (ILSC), 53, 54
geochemy, 61
inward subduction, 7
Ionian islands, 226–7
island arc
collisions, 5
migration, 12
island arc basalts (IAB), 77
see also under Macolod Corridor
Ivrea Zone (Ivrea–Verbano zone), Italian Alps, 15–16, 17, 18–19
Izanagi plate, 171
Izmir area, 215, 224
Izu–Bonin arc, 12, 39, 115, 116, 123, 131, 132, 258
Izu–Bonin Trench, 116, 132
Izu–Bonin–Mariana plate margin, 95
Izu–Bonin–Mariana system, 115, 117, 125–6, 162, 163
arc magmatism in the forearc, 128–32
Japan arc, 172, 176, 179
Japan plateau, 176
Japan Sea, 170, 171, 176, 184, 185, 186, 188
back-arc basin, 169, 186
gerochemy, 174, 175, 177, 178
islands, 177
magmagenesis, 185, 188
Yamato Basin see Yamato basin
Japan Trench, 9
Jeongog volcanic plug, 172
Jijal complex, 17
Kalaka Dacite, 99, 100–1, 102, 105, 106, 107, 110, 111, 112
Kalamoti, 217
Kambi, 214, 215, 217, 219, 224
Kamchatka arc, 249, 250, 262
gerochemy of shoshonites, 253–6
geological setting of shoshonite magmatism, 252–3
nature of source components, 259–61
petrography of shoshonites, 253
relation to extensional tectonics, 261–2
shoshonite magma chemistry, 256–9
tectonic setting, 250, 251–2
Kamila amphibolite, 17
Karaginsky Island, 250, 251, 253, 257
Karua volcano, 137
Kato Laka, 214, 215, 217, 219
Kawa Formation, 99, 104, 105, 106, 107–8, 109, 110
Keramaria Formation, 215
Kermadec arc (KA), 193, 194, 208
gerochemy, 199, 202, 204–7, 208, 209
petrology, 194, 195, 196, 197
Kermadec arc–Havre Trough, 195, 209
Kermadec–New Zealand arc, 15
Kimi Basin, 224
Kita–Yamato rift, 173
Kita–Yamato Trough, 173, 174
Kohistan arc, 15, 16–18
Komandor Basin, 250, 251, 257, 261, 262
Komi, 214, 215, 217, 219, 224
Komotini, 224
Korean peninsula, 169–70, 172, 186, 188
gerochemy, 174, 175, 176–8
Korobasaga Volcanic Group, 46
Koryak Highlands, 250, 251
Kula, 219, 221
Kula plate, 251
Kuril–Kamchatka arc, 15
Kuwea caldera, 137
Lachlan orogen, 157, 164
Laghi Series, 18
Lagula cone, 79
Laguna de Bay caldera, 78, 79
Larsen Basin, 270, 280, 281, 282
Lau Basin, 29–30, 33, 46–50, 55, 72–3, 202, 205, 206, 208
characterization, 53
gerochemyal correlation with arc–ridge distance, 68–72
geochemical correlation with ridge segmentation, 66–8
geochemistry, 40–6, 56–66, 68–9, 72
sedimentology, 33–9, 48–9
sediment texture, 39–40
tectonic setting, 31–3, 54
volcaniclastic geochemistry, 40–6
volcanism, 46–8, 49
Lau Ridge, 31, 46, 47, 48, 53, 113
leading plate, destiny of, 269
‘leaky’ transform faults, 31, 79
Lesbos, 215, 219, 224, 225, 228, 257
Lesser Antilles, 260
Lewolembwi maar, 144, 146, 147, 152
Limni-Istiea basin, 224
liquid line-of-descent, 121–2
lithosphere, thinning of, 266, 277, 280, 281, 282
thinspots, 266, 278, 280, 281, 282
Lopevi volcano, 137
Louisville seamount chain, 33
low degree melts of asthenosphere, 282
Luzon, 11
Luzon Island, 78, 80
see also Macolod Corridor
Luzon Trough, 80
Macolod Corridor, 77, 80
gochemistry, 81–5
island arc basalts, 77, 79–89
mantle wedge composition, 85–9
petrography and mineralogy, 81
subduction zone component, 89–91
tectonic setting, 78–9
mafic melts, 22
magmatism, 85–6, 89–91, 146–9, 185–8, 208–9, 244, 245, 246, 260–1
crustal rifting related, 16, 68, 152, 153, 234
decompression melting, 89, 185, 228, 266, 277, 279, 282
evolution of magmas, 21–2
extension related, 16–17, 226, 228, 249, 280, 281
fractional crystallization, see fractional crystallization of melts
hydrous melting, 7, 272, 279, 282
mantle derived, 260
mantle wedge mechanics and, 7, 206
mixing of magmas, 15, 68, 146, 152, 180, 188, 282
models for magma genesis, 14–15, 68
partial melting, 9, 68, 86, 152, 185, 188, 244, 246, 260, 262, 275
plume related, 185, 266, 280, 281
slab dehydration related, 7, 9, 228, 265–6
slab window related, 266–8, 269, 276–9, 281, 282
subduction related, 7, 89, 185–6, 188, 208, 226, 260–1, 262, 266, 280
Mago Volcanic Group, 48
Malakula, 137
Manila fault, 79–80
Manila Trench, 78, 80, 91
mantle diapirs, 89, 91
mantle-wedge mechanics and magmatism, 7
melt generation, 206
Maranon thrust and fold belts, 239
Mariana, 249
Mariana arc-Mariana Basin, 87
Mariana island arc, 12, 33
Mariana island arc basalts, 83, 84
Mariana Trough, 33, 162
transitional basalts, 55
Mariana–Japan arc, 15
Marum cone, 137, 138, 139
Masi Creek, 102–3
Mavra Votsala, 214, 215, 217, 219
Mayabobo cone, basalts, 81
Mbuelesu area, 144
mechanism of subduction, 4–7
Mediterranean Ridge accretionary wedge, 220, 227
melt extraction zone, volume of, 226
Methana, 221
Mid-Atlantic Ridge, 71
mid-ocean ridge basalts (MORBs), 55
melts, 88
migration of arcs, 11, 12
migration of magmatism, 228, 245, 281
migration of spreading centres, Lau Basin, 33
Mikazukiyama, 126, 131
Milford sound, 19
Milos, 221
Mindanao
inward subduction, 7
ophiolite, 20
Mindoro segment, Macolod Corridor, 83, 85
Mohorovičić discontinuity, 15, 17, 18, 20, 21
Molucca region
island arc collisions, 5
subduction reversal, 14
Mount Banahaw, 78, 79, 83, 86, 89
Mount Macolod, 86, 87, 88
Mount Makiling, 78, 79, 83, 86, 89, 90
Mount Malepuno, 78, 83–4, 86
Mount San Cristobal, 78, 83, 90
Mount Sungay, 83, 84, 86, 87, 88
Mukojima, 116, 117
Murah complex Indonesia, 260
Mytilene Formation, 224
Nabu Formation, 99
Nadele Breccia, 99, 104–5, 106–7
Nagcarlang cone, 79
nannofossil chalks, 36
nannofossil oozes
Lau Basin, 34, 36–7, 49
Tonga platform, 38, 39
nannofossil sediments, Lau Basin, 47
Nazca plate, 11, 238
Nestos, 224
New England oregon (NEO), 155–6, 163, 165, 166
see also Gamilaroi terrane
New Hebrides arc, 135, 136, 137, 138
see also Ambrym volcano
New Zealand continental crust, 194, 208
Ngatoro Basin, 193, 194, 210
geochemistry, 198, 199, 202, 203, 206–7
geological setting, 195
petrology, 194, 195, 196, 197, 206, 209
Ngatoro Ridge, 194, 195, 196
INDEX

Nisyros, 221
non-Dupal OIB, 275
nonexistent ‘Conrad discontinuity’, 20
North Palawan continental terrain, 78
Northern Amphibolitic series, 17
Nundle, 156, 157, 162
oblique collisions, 266
oblique subduction, 226
oceanic spreading ridge, 31
Oki islands, 176
Onnagawa Formation, 176
open system fractionation, 128
Orfanou-Strimon basin, 224
overriding plates, 11–12
deforamation of, 7, 9
oxygen fugacity, 66–7, 69, 72
Paccho, 237, 238, 239
Pacific margin of America, 268
Pacific Ocean, 29–30, 46
dize size decrease, 5
see also Lau basin
Pacific plate, 29, 31, 117, 171, 185, 188, 250
Pakhaniskinsky Range, 250, 251, 252
palaeo-Pacific (Kula) plate, 170, 188
Palau-Kyushu ridge, 131
Palay-Palay, 83, 86
Panama, 260
Panay, 83, 86
Pannonian Nenita Formation, 215
Papua New Guinea/Australian continent, collision, 164
Parece Vela Basin, 33
Paros-Naxos, 224
Patagonia, 268, 270, 274
alkalic basalts, 275, 281
Patmos basalts, 217, 221, 226
Peel Manning fault system (PMFS), 155, 157, 164
Peggy Ridge, 31, 49
pelagic-dominated sedimentation, Lau Basin, 34, 36–9
Peloponnesse, 226
Peru, 11, 238, 242
central and northern, 233, 234, 238, 240, 245, 246
see also Calipuy Group; Casma basin, Yungay volcanic rocks
Peru–Chile Trench, 233, 242
petrological modelling of magma genesis, 14
Philippine fault, 79–80
Philippine Sea basalts, 89
Philippine Sea plate, 81, 126
Philippine Trench, migration of, 80
Philippines, movement of, 80
Phoenix plate, 272
Pigna Barney, 156, 160, 162
Pip Volcano, 267
Pipeclay Creek Formation, 159
Pirgi, 214, 215, 216–17, 224, 225–6, 228
Pit Creek Volcanics, 160
plate decoupling, 95
plate motions, causes of, 3–4
plume-related magmatism, 185, 266, 280, 281, 282
pods, 102, 104
Pohang Basin, 170, 171, 172, 173
Polia Fogal Suite, 160
Polillo Island, 80
ponding of magma, 48, 281
Port Macquarie region, 164
Prince Gustav channel, 270, 281
Psalthoura volcanic rocks, 219, 224, 228
‘pull apart rift zones’, 79, 80
Queensland, 165
Quilmana Group, 244
Radiolarian studies, Gumaroi terrane, 159, 164
recycling of crustal materials, 21, 23
‘refrozen’ partial melts, 91
reversal metamorphism, 22
reversal motion, 5–6
Rhodope massif, 224
ridge slide (ridge push), 4
ridge spreading, 4
ripping of arcs, 29, 32
Rocas Verdes basin, 244–5
rolling-back hinges, 5, 7
Rosario Hill basalts, 83
Rothschild Island, 273
Ruapehu volcano, 199, 205
basalt–dacite field, 202
Rumble seamounts, 194, 195
basalts, 196, 197, 202, 203, 204, 205, 206, 207, 208, 209
Samoa hot-spot, 55
Samos basalts, 215, 217, 224, 226
Samothraki, 224
San Pablo maar field, 79
San Quintin basalts, 268, 270, 274
Sanghic arc basalts, 89
Santorini, 215, 221, 222, 224, 228
Sarmiento, 236
Scotia, 162
Seal Nunataks, 268, 269, 270, 272, 273, 280, 282
secondary melting, 15, 22
seismic properties of the crust-mantle transition, 20
seismic-coupling, 3, 12
Shackleton fracture zone, 272
Shikoku Basin, 33
shoshonite magmas, Kamchatka arc, 249
chemistry, 256–9
geochemistry, 253–6
petrography, 253
Sierra Nevada Batholith, 20
Skylaros, 219, 224
slab deformation, 3–4
slab dehydration, 7, 228, 265–6
slab flux processes, 206, 208, 209, 267
slab roll-back, 266, 267, 268–9, 277, 280, 281, 282
slab sinking, 3, 5, 7, 9
slab windows, 266
formation, 268–70, 282
geochemistry related to, 273, 274, 275–6
heat loss through, 23
length calculation, 269
magmatism related to, 266–8, 269, 276–80, 281, 282
seismic gap related to, 137
slab-bend zone, 5
slab-derived components, 89, 91
slab-derived melts, 260, 261, 262
slump folding, 36, 48
Solomon Sea, island arc collisions, 5
Solomon–Admiralty subduction reversal, 14
South America, 11, 236
South American plate, 238, 239
South China Sea crust, 77, 78, 80
South Fiji Basin, 30, 95, 98, 107
South Shetland Islands trench, 267, 270
Southeast India Ridge, 66
Southern Mindanao, subduction, 7
Southwest India Ridge, 66
Southwest Pacific, 97
spreading ridges, formation of, 4
Sredinny range, 251
Strona-Ceneri Zone, 18
sub-Andean thrust and fold belts, 239
subduction
erosion, 12
flip in polarity, 164
mechanism, 4–7
reversals, 5, 14
subduction and magmatism, 7, 14–16, 89, 185–6, 188,
208, 226, 260–1, 262, 266, 280
subduction hinge, 5
subduction rates, 13
igneous products related to, 226, 228
‘subduction signature’, 69, 77, 91
subduction-generated mantle flow, 3
Sumatra
fore-arc basin, 11
fore-arc ridge, 4
subduction system, 6
Sumisu Rift, 39, 162
Sykaminea Formation, 225
Taal basalts, 79, 81, 83, 84, 87, 88
Taal caldera, 78, 79
Taiwan–Luzon arc, 77
see also Macolod Corridor
Talkeetna arc, 15, 18
Tamworth Belt, 155, 156, 157, 158–9, 160, 164
Tamworth Group basalts, 162–3
Tangaroa volcano, 194, 195, 196, 197
Tapacocha, 237, 238, 239
Taupō Volcanic Zone (Province) (TVZ), 46, 47, 48,
193, 194
geochemistry, 199, 202, 203, 204–9
geological setting, 195
petrology, 194, 195, 196, 197–8, 206
terrane accretion, 14
thinspots, 266, 278, 280, 281, 282
Tholopotami, 217
Timor, subduction reversal, 14
Tofua arc, 29, 31, 33, 41, 46, 47, 49, 50, 53, 69, 72
Tohoku rift, 173
Tohoku Trough, 174
Tonga arc, 29, 39, 46, 47, 48, 53, 70, 96
Tonga forearc, 41, 119
Tonga platform, 31, 33, 46, 48
INDEX
sedimentology, 37–9
volcaniclastic geochemistry, 42–6
Tonga Trench, 29
Tonga–Kermadec plate margin, 95
Tonga–Kermadec–New Zealand subduction system, 209
Tongaririro volcano, 205
Tongatapu Island, 39
Tonga islands, 137
topagoa axis, 234
Torishima lavas, 123
trench fill, 12
trench-slope basins, 9
trenches
bathymetric, 4
structure, 4
turbidity current sedimentation, 38, 39, 48, 49
Tuvio volcano, 138, 146
Tuvio–Vetlam edifice, 149
Tuvio–Vetlam–Dalahun suite, 147, 148, 152
Ulleung Basin, 172
Ulleung Island, 170, 171, 176, 177, 187
underplating, 11, 14, 15–22, 23, 244
United States, subduction erosion, 12
Upper Barnard, 156, 161
Valu Fa Ridge, 53–4, 55, 68, 69, 72, 206
Vancouver Island, 19–20
Vanua Lava islands, 137
Vanuatu arc, 87, 97
Vanuatu Island basalts, 83, 84, 85, 86
Vanuatu–Fiji–Lau Ridge (Vitiaz) arc, 96, 98
velocity anomalies, 7
Vetlam volcano, 138, 145, 146
Vetlam–Tuvio–Dalahun volcanic rocks, 152
Viti Levu, Fiji, 95–6
geochemistry, 104–9
gerological framework, 96–8
Wainimala Group, 95–6, 98–104, 109, 113
Vitiaz arc, 96
Vivenka Fault, 252, 257
volcanic arc rocks, 15
volcaniclastic sedimentation, Lau Basin, 33, 34, 36,
37, 38, 39, 47
Voras Mountains, 224
Vroulidia, 214, 215, 217, 219
Wainimala arc, 96
Wainimala Group, 95–6, 98–104, 109, 113
geochemistry, 104–9
Wainimala–Colo plutons, 113
water saturation of melts, 22
Weraerae terrace ophiolite, 160
West Peruvian Trough, 234, 235, 239
geochemistry, 241–2, 244
Western Cordillera, 245
Western Pacific
back-arc basins, 244, 245
plate margin processes, 95
Western USA, 275, 281
Whatakanake volcano, 194, 195, 197
White Island, 195
‘within plate’ component, 66, 89
xenoliths, 20, 86
Yamato Bank, 170, 171, 173
Yamato Basin, 170, 171, 173
geochemistry, 176–84
gеodynamical context, 172–4, 176
mantle sources, 184–5
Yamato seamount chain, 170, 173

Yarrimie Formation, 159, 162
Yavuna arc, 97
Yavuna Group, 96–7, 98, 99, 100, 104, 111
dyke swarm, 101–4, 106, 110, 112
Yavuna Stock, 97, 113
Yungay volcanic rocks, 233, 239–40, 245
gеоchemistry, 242–4
tectonic setting, 240