Index

accretionary prisms
dewatering 114
geological setting 113–14
acetate ions 155, 157, 164
concentration 182, 193
stability 187, 188, 189, 190
acid-sulphates 225
advection 31
aerosols, marine 160
Ag see silver
Alaska
gold province 58
see also North Slope Basin
Alberta Basin
crude oil metal content 204
formation water salinity 154
rare gas systematics 349
uplift and erosion history 334–5
albite 134, 162, 317
allanite 308
Alleghany gold province 59
Alpine Fault 5
aluminium
ion complexes 184
ion systematics 164–5
ore 178, 194
alunite 226
amino acids 178, 180
amphiboles 160, 308
analcime 302
andesite 3, 4
anhydrite 157, 226, 302
anions in formation water 154–5
see also named species
Antarctica, Bransfield Strait study 262, 266
antimony in crude oils 205
apatite in red beds 308
apatite fission track analysis 326, 335
use in cooling time estimation 327–8
use in palaeogeothermal gradient estimation 329
use in palaeotemperature estimation 327
aquathermal pressuring 236–7
Aquitaine Basin 47, 49
Ar/Ar isotope analysis 278
aragonite dissolution 136
architecture, modelling behaviour of 146
argon ratios 348, 351, 355, 356–7, 359
transport effects 357–8
arsenic in crude oils 205, 209
asphaltic oils 203–4, 208
atacamite 309, 310
Atlantis Deep 262, 266
Australia
sedimentary basin studies
Canning Basin 339–41
Great Artesian Basin 34, 36
Murray Basin 160
Perth Basin 283
gold province studies
Cloncurry 61–6
Kalgoorlie 59
Victoria 58
Austria see Vienna Basin
azurite 309
backscattered scanning electron microscopy 100
bacteria
role in ore formation 281, 282, 309
role in reduction 157
Baffin Bay 49
Bakken Shale 242
Barbados prism 114, 115, 116
barite 280, 293, 317
barium ion distribution 171
base metal ions in ore fluids 193
basin modelling 9–12
applications
method 19
results 20–1
results discussed 21–3
fluid flow 14–15
formation and evolution 12
intraplate stress 15–17
loading 13–14
Bentheim 276
bicarbonate ions 155, 157, 164, 225–6
Big Horn Basin 34
biodegradation 213
biomarkers 203, 214
biotite in red beds 308
bismuth 280
bisulphide ions 193
bitumen
biodegradation 213–14
composition 203–5
dating 285–6
defined 203, 234
formation 209–10
maturation effects 213
metal interactions 205–9, 281–5
migration effects 213
in MVT ore 293
occurrence
authigenic mineral data 280–1
ore deposits 278–80
orogenic setting 280
reservoir 276–8
veins 275–6
role in ore exploration 286–8
bornite 306, 309
Bransfield Strait 262, 266
brine
behave in basins 28, 38
defined 152
role in metal ion transport 310–11
brittle behaviour
faulting 71
plastic processes compared 101
brochantite 310
bromide ions 156–7, 164, 205
buoyancy, role in fluid flow of 389
burkeite 303
butyrate ions 182
C isotope studies
 radio 268
 stable 240
calcite 276, 280, 293
cement 131, 136–7
diagenesis 239–40
formation 157
solubility 128, 129
veins 240
calcium ions 155, 161, 194
calcrete 302
California
 Alleghany gold province 59
 San Andreas Fault 80
 San Joaquin Basin 154, 185, 188, 239
Canada
 Alberta Basin 154, 204, 334–5, 349
 Baffin Bay 49
 Western Canada Basin 47–9, 215, 235
Canadian Shield 28, 38, 160
Canning Basin
 setting 339–40
 thermal history 340–1
carbohydrates 180
carbon dioxide
 formation 175, 180, 184
 helium ratio 348
 role in hydrothermal systems 269
carbonate
 anions 157
 cement 131, 136–7
 diagenesis 239–40
 eodiagenesis 303
 mesodiagenesis 305
 telodiagenesis 306
 solubility 128, 129
carboxylic acid anions 179–80
 di- 184–5
 mono- 182–4
Cascaadia prism 115, 116
cataclastic flow 104
cathodoluminescence 100
cations in formation water 155
 see also named species
cementation
 processes 130, 131–2, 136–7
 red beds 304
 sources 128–9
cerussite 313
chalcopyrite 305, 306, 309
chelate compounds 177
 see also ligands
Chile prism 114, 116
chloride ions
 in crude oils 205
 role in diagenesis 166
 role in transport 309–10
INDEX

deformation—cont’d
mechanisms
cataclastic flow 104
diffusive mass transfer 105
dislocation creep 105–7
fracture 101–4
independent particulate flow 104
methods of analysis 100
permeability effects 113, 115–17
Darcyan v. dynamic 117–19
measurements 117
relation to microstructure 119–20
relation to volume change 120–2
degassing reactions 3
dehydration 55, 57–8, 236–7
Denver Basin 33–4
desulphidation 55, 58
detachment zone 114
devolatilization 55, 57–8
dewatering 4
diagenesis
carbonate rocks 136–7
effect on permeability 118
effect on petroleum 239–41
migration 277–8
pore water behaviour 127–8
effect on calcite 129
effect on quartz 129–30
flux 128
low temperature 133–5
rates of reaction 165
red beds
eodiagenesis 302–4
mesodiagenesis 304–5
pH controls 313
redox controls 313
telodiagenesis 305–6
thermodynamic modelling 313–16
role of fractures 131–2
role of organic matter 191–3
thermal effects 131
diagenetic/metamorphic boundary 55–6
dickite 226
diffusion
equations 30–1
role in petroleum migration 127, 234, 243
diffusive mass transfer (DMT) 105
dilatancy and stress cycle 74, 76–7
effect of fluid pressure 76
effect of mean stress 75–6
effect of shear stress 75
dilatancy-diffusion hypothesis 74
dislocation creep 105–7
dismigration 234
disulphides 178, 179
Dogger Formation 45
Doherty Formation 63
dolomite 136–7, 280, 293, 317
dynamic fluid viscosity 29
dynamic permeability see permeability as a dynamic
concept
earthquake stress cycle and fluid flow 74, 86–7
dilatancy 74–7

fault valves 78–80
post-seismic redistribution 77
East African Rift 49
hydrothermal system 262, 266, 267, 268
East Pacific Rise 262, 266
deduction 4
Eh see redox potential
electron microprobes 100
elevation, significance of 5–6
odiagenesis 302–4
epidote 5, 308
erionite 302
erosion rates 5
Escanaba Trough
hydrothermal system 262, 263, 264–5
petroleum migration history 267, 268
evaporation index (EI) 155
evaporation processes 155–7
evaporite dissolution 157–8
explosive migration 237
explosion efficiency 250–1
numerical modelling 251–3
expulsion fractures 236, 242
extension fractures 71
fatty acids 180
fault gouge 104
fault-valves 78–80
fault/fracture mesh 72–4
faults
dilatancy effects 74
fluid pressure effects 70
modelling of 80
hydrology effects 85, 86–7, 91
permeability effects 70–1
modelling of 146–7
Fe see iron
feldspar
dissolution 133–5, 302, 304
in red beds 308
see also albite also plagioclase
ferromagnesian minerals 302
ferrous ions 193
Fischerschiefer 243
fission track analysis see apatite fission track analysis
flood basalt 2–3
flow studies
deformation effects 101
mechanisms
cataclastic flow 104
diffusive mass transfer 105
dislocation creep 105–7
fracture 101–4
independent particulate flow 104
methods of analysis 100
environmental effects
metamorphic 107–8
sedimentary 43, 107, 131
foreland basin studies 331–5
Papuan Fold Belt 335–8
mathematical model 14–15
measurement 358–9
permeability effects 113, 115–17
fluid inclusions 293, 309
fluids
flow see flow studies
mixing effects 316–18
pressure effects 70, 313–16
sources 55–7, 69
fluidized bed injection 4
fluorite 293
foreland basins
fluid flow 331–5
heat transfer properties 46–9
Papuan fold belt 335–8
formate ions 182, 188
formation water 224, 231
fractionation, role in petroleum migration of 249–51
fractures

cementation 131–2
effect on fluid flow 101–4, 131, 236, 241–2
permeability effects 71
France 45–6, 47, 49, 154
Frio Formation 242, 298
Fulmar Sandstone 134
fulvic acid 177–8, 180
galena 179, 280, 306
gallate ions 188
gangue minerals 317
garnet in red beds 308
gas formation 175, 184
Gavarnie Thrust mylonite 102, 104, 106
Germany 243, 276
descriptive equations 31–3
see also thermal characteristics
Hebgen Lake 86–7
helium
cycling 2
gas field study 353, 355
ratios in natural gases 348, 359
transport 357–8
hematite 226, 280
red beds 306, 317–18
Hg see mercury
Hill fault/fracture mesh 72–4
hot spots 2
Huldra Field 278
humic acid 177–8, 180
Hungarian Basin 52
see also Pannonian Basin
hydraulic conductivity 29–30
hydraulic diffusivity 31
hydraulic fracturing 235–6
hydraulic head
causes 69
measurement 28–9
hydrocarbon solubility 167
hydrocarbons see gas also oil also petroleum
hydrofracturing 27–8
hydrology, effect of faults on 85, 86–7
hydrosphere buffering 1
hydrothermal eruption breccia 228
hydrothermal systems
classification 261, 262
effect of organic matter
continental 266–7
submarine 262–6
expulsion 267–9
fluid interactions 269
hydrous pyrolysis 237
hydroxides, role in sorption of 318
hypersaline waters see salinity and saline waters
hyposaline waters 160
Ieru Formation 335, 336, 337
Illinois Basin 154, 158
ores 295
illite
effect on reservoir properties 278, 281
formation 134
illitization 236, 278, 281, 302, 304
Imburu Formation 336
immiscible flow see oil-water flow
independent particulate flow 104
inert gases see rare gases
intracratonic basins 45–6
iodide ions 205
ion microprobe 100
Ireland, ore exploration in 286, 288
Irish Sea Basin 278
iron
ions 184, 193, 204, 205, 206
minerals 307–8, 309
ores 178, 179, 194, 221
isotope studies
radio dating 166, 278, 285, 286, 294
stable composition 59, 165–6, 216, 240
Italy see Po Basin
jarosite 226
Jean d’Arc Basin 50
Juan de Fuca plate 3
juvenile water 224
K/Ar dating 278
Kaoko Project 3
Kalgoorlie gold province 59
kaolinite 225, 280, 306
dissolution 240
formation 133 134
in red beds 308
Kebrat Deep 262, 266
Kennedy Basin 33
kerogen
catagenesis 205, 209
degradation 186–7
role in petroleum migration 245, 247
Keuper Sandstone 278
Kimmeridge Clay 240
Kupferscheifer 309
La Luna Shale 215, 242
laser ICPMS 100
laser microprobe stable isotope analysis 100
lead ores 169–70, 179, 221
characteristics 293
Mississippi Valley Type
history of study 293–5
source model 295–7
summary 297–8
in red beds 302, 306, 307
transportation 310–12
ligands
action 177–80
defined 177
destruction 187–8
distribution 180–6
origin 186–7
reaction thermodynamics 188–91
role in diagenesis 191–3
role in ore formation 193–4
lithofacies analysis 239
Louisiana Basin 188
formation water study 154, 159, 161, 164
Magellan Basin 243
magmatic water 224–5
magnesium ions 155, 156, 157, 161
complexes 194
magnetite
in red beds 308
role in decarboxylation 187–8
malachite 309–10
maleate ions 185
maleic acid 184
malonate ions 185, 188, 189, 190, 193, 194
malonic acid 184
manganese 205, 221
mantle
convection 2, 3–4
water 2
Manville Formation 48
Maracaibo Basin 215
marcasite 205
Maronan Supergroup 63
mathematical modelling see modelling
maturation 213
Melones fault zone 69
membrane filtration 158–9
mercaptans 178, 179
Mercia Mudstone Group 278, 307
mercury
in crude oils 205, 209
ions in ore fluids 193
ore deposits 279–80, 288
mesodiagenesis 304–5
metal-bearing minerals 307–8
metal ion complexes 175
characteristics 205–8
in crude oil 203
evolution
initial 209–13
secondary 213–14
organic complexes 170–1, 177, 281
metal fulvate 177–8
metal humate 177–8
modelling behaviour
diagenesis 191–3
ore formation 193–4
see also metalloporphyrins
transport 308–13
metal ores 169–70
exploration 286–8
metalloporphyrins 206–8
as biomarkers 214–16
stability 210–13
metamorphic fluids 3
defined 55, 224
role in gold ores 65–6
Cloncurry Province 62–5
sources 58–61
devolatilization 57–8
metamorphic/diagenetic boundary 55–6
metasomatism and gold ores 65–6
Cloncurry province 62–5
meteoric water
 defined 224
 flux 133–5
 role in carbonate diagenesis 136–7
methane
 formation 3
 rare gas mixtures 353–5
 ratios 348
 sources 355–7
 role in hydrothermal systems 269
Mexico, Gulf of 296
mica
 dehydration 57
 hydrolysis 160
 see also biotite also muscovite
Michigan Basin
 formation water 10, 154, 164
 heat transfer 45, 46
micro-organisms 1
microcracks 71
microfracturing 235–6
microstructures 119–20
Mid Atlantic Ridge 262, 266
Middle Valley hydrothermal system 262, 265–6
petroleum expulsion 267, 268
migration 213
 see also primary migration also secondary migration
mineralization 93–4
 red beds 313
 fluid flow modelling 316–18
 sorption 318–20
 thermodynamic modelling 313–16
Mississippi Valley Type (MVT) ores 193, 221, 279, 280
 characteristics 293
origins
 history of study 293–5
 source model 295–7
 summary 297–8
 temperature controls 309
setting 293
Missouri groundwater study 33
modelling
basin
 applications
 method 19
 results 20–1
 results discussed 21–3
 fluid flow 14–15
 formation and evolution 12
 intraplate stress 15–17
 loading 13–14
 rift shoulder erosion 12–13
 diagenesis 191–3
 fault zones 80
fluid mixing 316–18
 mineral-fluid equilibria 313–16
 strain 87–8
 thermal history 326
 two-phase flow 144–9
 Molasse Basin 243
 monazite 283, 308
 Monterey Shales 73, 239
 montmorillonite 226
 role in decarboxylation 187–8
 mordenite 226
 Mount Isa 61, 306
 mud volcanoes 4
 Murray Basin 160
 muscovite 308, 317
 mylonite 102–4
 Na see sodium
 Nankai prism 114, 115, 116, 117
 143Nd/144Nd ratios 216
 neon ratios 351, 355, 356–7, 359
 transport effects 357–8
 Neuquen Basin 276
 New Albany Shale 204, 206
 New Zealand 5, 204, 216, 262, 266–7
nickel 179, 276
 effect of biodegradation 213–14
 effect of maturation 213
 effect of migration 213
 occurrences 204–5, 206, 208–9, 210
 use as biomarker 214–16
nitrogen : helium ratios 348
North Sea Basin 9, 49, 278
North Slope Basin 34–6, 37, 50–2
 petroleum geochemistry 215
Nova Scotia Shelf 51
O isotope studies 165–6, 240
ocean floor flux 2
ocean water
 geochemistry 2
 volume 3
oil-water flow 141–2
 equations governing 142–3
 experimental study 143–4
 modelling 144–6
 anisotropy effects 148
 pervasive faulting effects 146–7
 results discussed 148–9
 sediment architecture effect 146
opal phases 133
optical microscopy 100
Oregon 326
Oregon prism 116
ores
 deposition 278–80
 exploration 286–8
 formation modelling 193–4
 role of organic matter 175–6
mineralogy
ores—cont’d
relation to formation water 169–71
sedimentary 132–3
see also named metals
organic acids 167–8, 180
destruction 187–8
method of measuring 181–2
origin 186–7
see also carboxylic acid
organic matter 175–6
accumulation
continental 266–7
submarine 262–6
chemical behaviour
compound distribution 180–6
compound origins 186–7
compound types 177–80
ligand reaction thermodynamics 188–91
destruction 187–8
effects of hydrothermal system 261, 262, 270
expulsion 267–9
fluid interactions 269
modelling behaviour
diagenesis 191–3
ore formation 193–4
role in diagenesis 209–10
role in formation water salinity 167–9
role in metal ion complexes 170–1, 281
organometallic compounds 177
organosulphur ligands 178–9
Orubadi Formation 335, 336, 337
osmotic flow 158
Ouachita Mts 276, 280
overburden effect on migration 236
overpressure 18–19
oxalate ions 184, 185, 188, 189, 190, 193, 194
oxides, role in sorption of 318
oxygen fugacity see redox potential
Ozark Mt ores 293
palaeogeothermal gradient analysis 328–31
palaeosurfaces, significance of 227, 228
palaeotemperature analysis
fission track method 327
vitrinite reflectance 326–7
palaeosurface
Pattani Basin 154
Pb ore see lead
$^{208}\text{Pb}/^{206}\text{Pb}$ dating 285
pelite metamorphism 57
peptides 180
peridotite
deserpentinization 5
serpentinitization 2
permeability
deformation-created changes 101, 104–5
as a dynamic concept
Darcyan v. dynamic 117–19
effect of microstructure 119–20
effect of volume 120–2
introduction 113, 115–17
measurement 117
effect of diffusive mass transfer 105
effect on faults 70–1
effect on hydraulic conductivity 29–30, 37
experimental study 143–4
mathematical modelling 144–6, 148–9
anisotropy effect 148
pervasive faulting effect 146–7
sediment architecture effect 146
measurements 242–5
continental crust 27
sandstone 131
shale 131
relation to stress field 71
role in immiscible fluid flow 141–2
equations governing 142–3
Perth Basin 283
Peru prism 114, 116
petroleum
hydrothermal generation 261, 262, 270
continental 266–7
submarine 262–6
migration see primary petroleum migration
pH
organic matter effects 175, 180
pore water 161
role in red bed diagenesis 313, 316
role in sorption 320
phenols 180
Phosphoria Shale 215
plagioclase
dissolution 134
in red beds 308
plastic behaviour, brittle processes compared 101
platinum 178, 179, 282
Po Basin 353–5
pore size classification 243
pore water
characteristics 127–8
composition 151–2
flux calculation 128
low temperature reactions 133–5
mixing effects 137
porosity
deformation-created changes 101
effect on cementation 130
effect of depth 19
effect on diagenesis 56
effect of diffusive mass transfer 105
INDEX

porosity—cont’d
 effect of dislocation creep 105
 effect of dissolution 240
porphyrins 179
 as biomarkers 214–16
 metallic ion links 206–7
 stability 210–13
Posidonia Shale 215
post-seismic redistribution 77
potassium cations 155, 161
pressure solution, role in petroleum migration of 241
pressure/temperature controls
 hydrothermal systems 269
 Mississippi Valley Type deposits 309
 role in diagenesis 314
primary petroleum migration controls
 diagenesis 239–41
 fractures 241–2
 hydrothermal system 267–9
 lithology 238–9
 defined 233–4
 driving forces 236–7
 expulsion efficiency 250–1
 fractionation effects 249–50
 laboratory simulation 237–8
 modelling 251–3
 modes 234–6
 pathway analysis
 geochemical 246–9
 petrophysical 242–6
 prism taper angle 114
 propionate ions 182, 189, 193, 194
 pyrite 205, 226, 280, 293, 306
 from hematite 305
 as reductant 309
 role in decarboxylation 187–8
 pyrolysis 186–7, 245
 pyroxene 308
quartz 293
 cement mineral 129–30, 131, 134, 304–5
 formation water content 165
 gangue mineral 317
 role in decarboxylation 187–8
 solubility 128
radio-isotopes see under isotopes
Rannoch Formation 148
rare gases
 groundwater relationships 355–7
 levels in gas field study 353–5
 sources 351–3
 transport methods 357–8
 use in fluid flow studies 358–9
Rayleigh convection 131
Rb/Sr dating 294
red beds
 diagenesis 313
 eodiagenesis 302–4
 mesodiagenesis 304–5
 telodiagenesis 305–6
 thermodynamic modelling 313–16
 formation 281–2
mineralization 306
 fluid flow 316–18
 metal distribution 307–8
 metal transport 308–13
 sorption 318–20
 origin 301
 related base metal (RBRBM) deposits 193
Red Sea 262, 266
Red Sea Rift 49
redox potential
 effect on metal ion complexes 203, 215
 effect on metal precipitates 281, 309
 effect of organic matter 175, 180
 formation waters 168–9
 role in diagenesis 313, 316
 eodiagenesis 303–4
 mesodiagenesis 305
 role in sorption 320
 reduction reactions 304, 305, 309
 reverse osmosis 158–9
 Rheinraben 34, 49, 325
 rift basins and heat transfer properties 49–52
 Rikuu earthquake 86–7
 river flow and earthquakes 86–7
 Rough Rock Group 285
 rutile 205
safflorite 209
Salina Formation 154, 160
salinity and saline waters
 composition 154, 160–6
 defined 152
 effect of organic matter 167–9
 history of study 152–3
 origin 155–60
 pH effects 161
 role in diagenesis 127, 128
 role in gas solution 351
San Andreas Fault 80
San Joaquin Basin 185, 188
 formation water 154
 porosity study 239
sandstone
 diagenesis 130
 permeability modelling 144–6, 148–9
 anisotropy effects 148
 pervasive faulting effects 146–7
 sediment architecture effects 146
 saturation, role in petroleum migration of 245–6
Saxony Basin, Lower 243
Sb see antimony
sea water evaporation 155–7
secondary electron scanning electron microscopy 100
secondary migration 234
sediments
 sedimentary basin studies
 characterization 44–5, 52
 foreland 46–9
 intracratonic 45–6
 rift 49–52
 fluid flow 43
 thermal characters
 equations 44
 time factors 43–4
seismic pumping 74
selenium in crude oils 205, 209
serpentinitization 2, 5
Shaban Deep 262, 266
shear stress and dilatancy 74, 75
shear zones and microstructural analysis 119, 120
Sherwood Sandstone Group 278, 302
diagenesis 302, 306
silica sinter 226, 228
silver 193, 282, 306
Silvermines ores 288
skutterudite 209
147Sm geochemistry 216
smectite
 dehydration 236
 formation 134
 replacement reactions 302, 304, 307
sodium
 in crude oils 205
 ions and complexes 155, 161, 194
solubility, factors affecting 128
sorption 318–20
 role in petroleum migration 245–6
South Africa 58
South Caspian Basin 37
SPEx method 237
sphalerite 179, 280, 306
spilite 3
Sr dating 59, 166
steam zone 226, 227
stibnite 280
strain
 cycle 92–3
 modelling 87–8
stress
 cycle and dilatancy 74–7
 map of Europe 10
 static field effects 71
sulphate anions 155, 157, 164, 225
sulphides
 ions 193
 ores 221, 282
 role of organic matter 179
 role in red bed diagenesis 317
sulphur 205, 226
Swiss Molasse Basin 47, 49
sylvite 302

Tanganyika Lake hydrothermal system 262, 266, 267, 268
Taranaki Basin 204, 216
tectonic erosion 3
tectonic fractures 242
telodiagenesis 305–6
temperature
 role in diagenesis 314
 role in dissolution 127, 128
temperature/pressure controls
 hydrothermal systems 269
 Mississippi Valley Type deposits 309
 role in diagenesis 314
tenorite 310, 313
tetrapyrrrole 179
thermal characteristics
 descriptive equations 44
 sedimentary basins 52
 foreland 46–9
 intracratonic 45–6
 rift 49–52
 time effects 43–4
thermal conduction 128
thermal convection 1, 2, 131, 269
thermal diffusivity 44
thermal history modelling 326
 cooling time estimation
 fission track analysis 327–8
 vitrinite reflectance 328
fluid flow analysis
 foreland basins 331–5
 Papuan fold belt 335–8
 intrusions 338–9
 Canning Basin 339–41
maximum palaeotemperature estimation
 fission track analysis 327
 vitrinite reflectance 326–7
 palaeogeothermal gradient 328–31
 transient v. steady state effects 341–2
thermodynamic buffering 162
thermodynamic modelling 313–16
thiols 178, 179
thiophene 178, 179
thorium ores 282–4
thrusts 3, 5
titanite in red beds 308
tonalite 5
topography and fluid flow 33–7
Toro Sandstone Formation 335, 336, 337
total dissolved solids 152, 157
total organic carbon 245
trace elements
 crude oil content 203–4
 in porphyrins 206–8, 210–13, 213–14
 Trans-Atlantic Geotraverse 262, 266
 travertine 226
tronan 303
two-phase fluid flow 141–2
 equations 142–3
 experimental study 143–4
 mathematical modelling 144–6
 anisotropy effects 148
 pervasive faulting effects 146–7
 results discussed 148–9
 sediment architecture effects 146
Tynagh ores 286
U/Pb dating 286
Uinta Basin 34, 47, 49, 326
INDEX

ultrafiltration 158–9
underplating 114
underthrusting 4–5
uplift estimation 329–31, 333–5
uranium
ores 178
effect of bitumen 278, 279, 282, 284
in red beds 302, 306, 307, 309, 310
use in dating 285, 286
USA
basin studies
Big Horn 34
Denver 33–4
Illinois 154, 158
Kennedy 33
Louisiana 154, 159, 161, 164, 18
Michigan 10, 45, 46, 154, 164
Missouri 33
Uinta 34, 47, 49, 326
Williston 34, 36, 46, 243
gold provinces
Alaska 58
Alleghany 59
valerate ions 182
vanadium
ions 179, 276
effect of biodegradation 213–14
effect of maturation 213
effect of migration 213
occurrence 204–5, 206, 210
use as biomarker 214–16
ores 278, 282
Vancouver prism 115, 116
Venezuela ores 287
Victoria gold province 58
Vienna Basin 353–5
vitrinite reflectance (VR) 293, 326
measurements 335
use in cooling time analysis 328
use in palaeogeothermal gradient analysis 329
use in palaeotemperature analysis 326–7
volatile fatty acid (VFA) 180
volatiles inventory 2
volume change effects in permeability 120–2
Waiotapu 262, 266–7
waste disposal problems 1
water
inventory 1–2, 69
role in global cycle 2
role in hydrothermal systems 269
role in ocean recycling 2
sources 224–5
water table 33–7
Waterstones 278
well logs, use of 238
Wessex Basin 302, 305
West Siberia Basin 276
Western Canada Basin
heat transfer properties 47–9
petroleum analyses 215, 235
wettability, role in petroleum migration of 246
Williston Basin 34, 36, 46, 243
Witwatersrand gold province 58
xenon ratios 351
Yellowstone National Park 262, 266
zeolites 302
zinc
ion behaviour 178, 179, 193, 194, 205
ores
Mississippi Valley Type ore 221, 293
history of study 293–5
source model 295–7
summary 297–8
red beds
mineralization 302, 306, 307
transportation 310–12
sources 169–70
zincite 313
zircon 205, 283
in red beds 308