Index

<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aandenk Formation</td>
<td>369-70, 387</td>
</tr>
<tr>
<td>abandoned channels</td>
<td>144, 196, 247</td>
</tr>
<tr>
<td>cut-offs</td>
<td>47</td>
</tr>
<tr>
<td>deltas</td>
<td>58</td>
</tr>
<tr>
<td>downstream effects</td>
<td>143</td>
</tr>
<tr>
<td>fines in</td>
<td>125</td>
</tr>
<tr>
<td>abandonment deposits</td>
<td>158, 189, 297</td>
</tr>
<tr>
<td>abrasion</td>
<td>89-90, 100, 250, 384</td>
</tr>
<tr>
<td>accreting bars</td>
<td>45, 47-8</td>
</tr>
<tr>
<td>accretionary bank deposits</td>
<td>57</td>
</tr>
<tr>
<td>active channels</td>
<td>115, 121-2, 197</td>
</tr>
<tr>
<td>active gravel areas</td>
<td>211, 215, 233</td>
</tr>
<tr>
<td>aggradation rates, Ashley River</td>
<td>244</td>
</tr>
<tr>
<td>Ainsa basin</td>
<td>180</td>
</tr>
<tr>
<td>Airborne Thematic Mapper</td>
<td>405-6, 411-12</td>
</tr>
<tr>
<td>Alif Field</td>
<td>334</td>
</tr>
<tr>
<td>Allen, River</td>
<td>211</td>
</tr>
<tr>
<td>alluvial fans</td>
<td>99, 196, 335, 396, 398</td>
</tr>
<tr>
<td>alternate bars</td>
<td>15-17, 15-18, 22, 34, 77, 80-1, 121</td>
</tr>
<tr>
<td>Amal Field</td>
<td>335</td>
</tr>
<tr>
<td>Amazon River</td>
<td>5</td>
</tr>
<tr>
<td>Ami River</td>
<td>199, 201</td>
</tr>
<tr>
<td>anabranches</td>
<td>21-2, 75, 77-8, 259</td>
</tr>
<tr>
<td>avulsion</td>
<td>119, 124, 137, 299, 302</td>
</tr>
<tr>
<td>Brahmaputra, 267</td>
<td></td>
</tr>
<tr>
<td>confluences</td>
<td>129-30</td>
</tr>
<tr>
<td>stability</td>
<td>80</td>
</tr>
<tr>
<td>anastomosing channels</td>
<td>21, 201, 259, 264</td>
</tr>
<tr>
<td>anastomosis, secondary,</td>
<td>48</td>
</tr>
<tr>
<td>apex avulsion</td>
<td>78, 121, 123-4</td>
</tr>
<tr>
<td>aquifers, 1, 73</td>
<td></td>
</tr>
<tr>
<td>pollution</td>
<td>13</td>
</tr>
<tr>
<td>Aracas Field</td>
<td>335</td>
</tr>
<tr>
<td>architectural analysis</td>
<td>310-11, 381</td>
</tr>
<tr>
<td>armoured beds</td>
<td>31, 82, 90, 159, 223</td>
</tr>
<tr>
<td>bar tops, 2</td>
<td></td>
</tr>
<tr>
<td>break up, 81</td>
<td></td>
</tr>
<tr>
<td>channel stability</td>
<td>252</td>
</tr>
<tr>
<td>low fuel stages</td>
<td>42-3</td>
</tr>
<tr>
<td>Ashley River, 241-55, 242-4, 245</td>
<td></td>
</tr>
<tr>
<td>Assam Valley</td>
<td>257</td>
</tr>
<tr>
<td>attack bends, 252</td>
<td></td>
</tr>
<tr>
<td>avalanche faces</td>
<td>131, 173</td>
</tr>
<tr>
<td>confluence channels</td>
<td>137</td>
</tr>
<tr>
<td>dissection</td>
<td></td>
</tr>
<tr>
<td>falling stage</td>
<td>288</td>
</tr>
<tr>
<td>flow separation</td>
<td>34, 39, 121</td>
</tr>
<tr>
<td>tributary bars</td>
<td>32-3, 38, 122</td>
</tr>
<tr>
<td>unit bars, 130</td>
<td></td>
</tr>
<tr>
<td>avalanche sets, 293</td>
<td></td>
</tr>
<tr>
<td>avulsion, 59, 78-81, 182, 195</td>
<td></td>
</tr>
<tr>
<td>apex, 78, 121, 123-4</td>
<td></td>
</tr>
<tr>
<td>Ashley River, 245, 252-4</td>
<td></td>
</tr>
<tr>
<td>choking, 76-9, 121-2</td>
<td></td>
</tr>
<tr>
<td>construction, 78, 121-2</td>
<td></td>
</tr>
<tr>
<td>effects on scour</td>
<td>35</td>
</tr>
<tr>
<td>major channels</td>
<td>185, 188</td>
</tr>
<tr>
<td>mechanisms, 119, 121-7</td>
<td></td>
</tr>
<tr>
<td>Mesaverde Group, 320</td>
<td></td>
</tr>
<tr>
<td>nodal, 196</td>
<td></td>
</tr>
<tr>
<td>periodic, 59</td>
<td></td>
</tr>
<tr>
<td>random, 196</td>
<td></td>
</tr>
<tr>
<td>rates of, 8, 196</td>
<td></td>
</tr>
<tr>
<td>ribbon sand-bodies, 185</td>
<td></td>
</tr>
<tr>
<td>River, 233</td>
<td></td>
</tr>
<tr>
<td>rotation, 124</td>
<td></td>
</tr>
<tr>
<td>Rough Rock, 296, 302</td>
<td></td>
</tr>
<tr>
<td>Baghmati River, 109</td>
<td></td>
</tr>
<tr>
<td>Bangali River, 269</td>
<td></td>
</tr>
<tr>
<td>bank erodibility</td>
<td>114</td>
</tr>
<tr>
<td>bank erosion, 253-4</td>
<td></td>
</tr>
<tr>
<td>avulsion, 123</td>
<td></td>
</tr>
<tr>
<td>Brahmaputra, 269-73</td>
<td></td>
</tr>
<tr>
<td>channel bends, 75, 235</td>
<td></td>
</tr>
<tr>
<td>channel migration, 45</td>
<td></td>
</tr>
<tr>
<td>divergent flow, 2</td>
<td></td>
</tr>
<tr>
<td>dominant channels, 35</td>
<td></td>
</tr>
<tr>
<td>episodic, 35</td>
<td></td>
</tr>
<tr>
<td>rapid, 17</td>
<td></td>
</tr>
<tr>
<td>vegetation effects, 191, 226</td>
<td></td>
</tr>
<tr>
<td>bank retreat, 271</td>
<td></td>
</tr>
<tr>
<td>bank scalloping, 253</td>
<td></td>
</tr>
<tr>
<td>bank stabilization, 271-2</td>
<td></td>
</tr>
<tr>
<td>bar apex deposits, 52</td>
<td></td>
</tr>
<tr>
<td>bar deposition, 17</td>
<td></td>
</tr>
<tr>
<td>bar formation, 1-2</td>
<td></td>
</tr>
<tr>
<td>bar growth surfaces, 317</td>
<td></td>
</tr>
<tr>
<td>bar heads, 17, 30, 42, 47, 52, 75, 94, 96, 100, 102, 379</td>
<td></td>
</tr>
<tr>
<td>aggradation, 76, 91</td>
<td></td>
</tr>
<tr>
<td>coarse-grained, 2, 83</td>
<td></td>
</tr>
<tr>
<td>erosion, 53, 137</td>
<td></td>
</tr>
<tr>
<td>heavy minerals in, 45</td>
<td></td>
</tr>
<tr>
<td>bar migration, 31, 52, 59, 121</td>
<td></td>
</tr>
<tr>
<td>bar side deltas, 380</td>
<td></td>
</tr>
<tr>
<td>bar stabilization, 248</td>
<td></td>
</tr>
<tr>
<td>bar tail scrolls, 30, 35, 42</td>
<td></td>
</tr>
<tr>
<td>bar tails, 17-18, 52-3, 58, 83, 94, 102</td>
<td></td>
</tr>
<tr>
<td>bar tops, 277-8</td>
<td></td>
</tr>
<tr>
<td>bars</td>
<td></td>
</tr>
<tr>
<td>accretion, 45, 47-8, 123</td>
<td></td>
</tr>
<tr>
<td>alternate, 15-17, 22</td>
<td></td>
</tr>
<tr>
<td>attachment, 268</td>
<td></td>
</tr>
<tr>
<td>bank-hugging, 379</td>
<td></td>
</tr>
<tr>
<td>chute, 17, 42, 57, 121</td>
<td></td>
</tr>
<tr>
<td>classification, 74</td>
<td></td>
</tr>
<tr>
<td>complex, 136-7</td>
<td></td>
</tr>
<tr>
<td>compound, 386</td>
<td></td>
</tr>
<tr>
<td>crescentic, 17</td>
<td></td>
</tr>
<tr>
<td>cross-channel, 16</td>
<td></td>
</tr>
<tr>
<td>deposition, 40</td>
<td></td>
</tr>
<tr>
<td>diagonal, 16, 77, 379-81, 386</td>
<td></td>
</tr>
<tr>
<td>dissected, 2</td>
<td></td>
</tr>
<tr>
<td>gravel, 53</td>
<td></td>
</tr>
<tr>
<td>lateral, 17, 114, 123, 134, 136, 181, 286</td>
<td></td>
</tr>
<tr>
<td>linguoid, 16, 42, 181, 375, 379</td>
<td></td>
</tr>
<tr>
<td>longitudinal, 17, 379, 381, 383, 386, 398</td>
<td></td>
</tr>
<tr>
<td>medial, 17, 83-4, 132-3, 210-11, 296, 299</td>
<td></td>
</tr>
<tr>
<td>deposition, 76</td>
<td></td>
</tr>
<tr>
<td>evolution, 136-7, 272</td>
<td></td>
</tr>
</tbody>
</table>
bars, medial (contd)
flow around, 123
lamination, 286
sedimentation, 132-3
multiple-row, 28
persistance, 268
point, 17, 22, 298, 381
accretion, 47, 123
cut-offs, 77
falling stage, 44
grain sizes, 53
high flow, 43
lamination, 286
meanders, 74, 83, 197
post-confluence, 131
prograding, 386
riffle, 57
scroll, 17, 52, 57, 288
separation zone, 131
side, 16-17, 32, 38, 40, 47, 52-3, 379, 386
simple, 386
stacked, 375, 379, 381, 383
superposition, 59
transverse, 16, 42, 77, 84, 132-3, 185, 375, 385-6
tributary, 17, 32, 42, 57, 131, 288
unit, 16-17, 35, 41, 43, 45, 47-8, 52, 57, 130
bed amplitude index, 250, 252
bed armour, 31, 82, 90, 159, 223
breakup, 81
channel stability, 252
low flow stages, 42-3
bed configurations, 42
bed relief index, 252
bed shear stress, 25-6, 30, 47, 76-7
bankfull flow, 81
central bars, 84
grain size, 41
shallow flows, 2, 285-6
transverse bars, 84
bed-level changes, 241
bedding truncation, 59
bedform orientation, 58, 132
bedform troughs, 44
bedforms, Brahmaputra, 263
bedload gravel, 374, 377
bedload sheets, 17, 43, 49, 83, 173
bedsize, 42
bedload transport, 41-2, 125
capacity, 80
pulsed, 125, 132, 159, 173
rate, 80-2, 84, 114, 130
bedload/suspended load, 110
bedwaves, 15, 17
Bella Coola River, 191
Belsue Formation, 180
berms, 198-9
Bhakla River, 199
bi-level channels, 198
bimodal gravel, 150, 152-3, 156, 170-1
bioturbation, 57-8, 184, 187-8, 390
Blackhawk Formation, 308, 315, 327
Book Cliffs, 305-32
bottomsets, 158
bounding surfaces

INDEX
hierarchies, 292
Mesaverde Group, 310, 314, 316-17, 319, 321, 325, 330
Roug Rock, 296-7, 299
Witpan Conglomerate, 381
Brahmaputra River, 3, 7, 18, 21, 59, 143, 189, 192, 198, 257-89
braid-channel ratio, 106, 108
braiding
definition of, 15
development, 76
braiding index, 21-5, 59, 106, 233
braiding intensity, 160, 267
braiding parameters, 58-9, 106
braidplain width, 3, 245
Brent Field, 337-8
Brent Group, 354, 356, 359
bridge scour, 1, 73
Buchan Field, 335
Burhi Gandak, 109
Burhi Rapti River, 199
Calamus River, 26, 36, 44, 52, 80
calcrete, 26, 45
Calopetri Conglomerate Formation, 400
Camlad, River, 211
Campodarbe Group, 180
carbon seams, 375, 380-1
Carbonerase, 405
Castlegate Formation, 305-6
Castlegate Sandstone, 310, 312, 315, 322-3, 325, 327, 328-9
central bars see medial bars
channel abandonment, 144, 196, 198
cut-offs, 47
deltas, 58
downstream effects, 143
channel belt aggradation, 119
channel blocking deposits, 33
channel complexes, 371
channel confluences (see confluences)
channel cutting, 59
channel deepending, 327
channel diversion, 47
channel division, 211
channel evolution, 15-17, 124
channel fill deposits, 57-9, 181, 184, 379-81, 383, 386, 393, 398
channel filling, 53, 124, 158
channel geometry, 19
channel heads, 75, 78
channel hierarchies, 2, 301
channel migration, 17, 45, 47-9, 52, 299
channel mobility, 160
channel morphology, 3, 80
channel mouth deposits, 322
channel ordering, 19-20, 124, 259
channel orientation, 31, 58
channel perching, 196
channel persistence, 248
channel plugging, 124, 126, 137
channel preservation, 253
channel reoccupation, 246
channel sand units, 197
INDEX 415

channel scours, 310, 315–17
channel sinuosity, 19, 21, 358
channel size, 32
channel slope, 23, 27
channel splitting, 19, 22, 143
channel stability, 235, 241, 252
channel stacking, 296, 299, 301
channel switching, 59, 121, 125, 130, 135, 196, 199, 296–7
channel thalwegs, 45
channel widening, 17
channel width, 358
channel width-depth ratio, 84
channelization, 231
channels, perched, 198
character of braiding, 22
chert, 371
choking avulsion, 78–9, 121–2
chute bars, 17, 42, 57, 121
chute cut-offs, 17–18, 77, 80, 121, 132, 196
chutes, 77
chutes and lobes, 43, 77
clast imbrication, 374
clast orientation, Rhine gravels, 150
clast provenance, 398
clastic pulses, 308
climatic effects, 59, 199, 224, 226
cobble formation, 296
Collegats Group, 180
Columbia River, 201
complex bars, 136–7
compound bars, 386
concave channel banks, 48
confluence angle, 31–2, 34, 38
confluence kinetics, 140–2
confluence mixing zones, 38, 40
confluence scour, 1, 7, 32, 40, 42, 52, 173
confluence zones, 28, 31–2, 37–8
hydrologic geometry, 35
confluences, 1, 75, 83
conglomerates, 181
intraformational, 286
polymict, 392, 395
Congo River, 4
constriction avulsion, 78, 121–2
convergent flow, 76, 386
convoluted bedding, 375
Cooper Basin, 334
Cooper’s Creek, 195
cosets, 283–4, 295, 299
counterpoint deposits, 52
crescentic bars, 17
crest dissection, 39
crestline orientation, 43–4
crevase splays, 188, 196
crevase-channel deposits, 319
cross-bar channels, 17–18, 20, 33, 48, 59
cross-channel bars, 16
cross-lamination, ripple, 314, 321, 375
cross-sets, 154–5
planar, 185
cross-stratification, 58
down-current, 283–4, 292, 294–5, 299
planar, 280, 292, 294–5, 322, 374–5, 377, 379
darcy–weisbach coefficient, 26
Darling Downs, 405
debris flow, 159
Dee, River, 238
deforestation, 226
degrees of braiding, 21–2
delta abandonment deposits, 325
delta front facies, 308
delta plain facies, 307
deltas, 42, 44, 58, 302, 324, 327
delta-mouth, 315
dendritic channels, 44
deposition rates, Brahmaputra, 286
dessication cracks, 44, 58
dewatering structures, 280, 296, 324
diagonal bars, 16, 77, 379–81, 386
diffusion zones, 2, 28, 35, 40, 75
Dimlington Stadial, 206
discharge ratio, 142, 144
discharge variation, 23–4, 80
divergent flow, 379
dominant channels, 197–8, 224
dominant discharge analysis, 259–62
Donjek River, 383–4
downstream sedimentation, 137
downstream sorting, 83–4, 89
downwelling, 94
drainage debris, 410
drill stem tests, 342
dune crests, 43, 153, 295
dune fronts, 83
dune heights, 44
dune lengths, 44
dune migration, 152–3, 263, 268, 284, 292, 298–9, 375, 377
dunes, 17, 36–7, 42–3, 49, 53, 279–80, 288
climbing, 294
curved-crested, 295
humpback, 281
straight-crested, 295
superimposed, 284, 295
eddies, 99–100
effluent seepage, 94
Eldorado Formation, 370
embankments, 233, 236–9, 272
embayments, 268
enhanced scour, 323
entrainment, 83–4, 90, 113
entrance zones, 38
erosion, 45
headward, 17
erosion rates, 47, 269–73
erosion surfaces, Rough Rock, 296–7
erosion susceptibility, 235–6
erosional truncation, 53
Escañilla Formation, 178, 180, 195
Esmond Complex, 349
estuarine deposits, 324, 327
erosion susceptibility, 235–6
erosional truncation, 53
Escanilla Formation, 178, 180, 195
Esmond Complex, 349
estuarine deposits, 324, 327
erosion susceptibility, 235–6
erosional truncation, 53
Escanilla Formation, 178, 180, 195
Esmond Complex, 349
estuarine deposits, 324, 327
erosion susceptibility, 235–6
erosional truncation, 53
Escanilla Formation, 178, 180, 195
Esmond Complex, 349
estuarine deposits, 324, 327
erosion susceptibility, 235–6
erosional truncation, 53
Escanilla Formation, 178, 180, 195
Esmond Complex, 349
estuarine deposits, 324, 327
erosion susceptibility, 235–6
erosional truncation, 53
Escanilla Formation, 178, 180, 195
Esmond Complex, 349
estuarine deposits, 324, 327
INDEX

current ripple, 279–81, 284, 286
parallel, 396
planar, 285
plane bed, 279–81, 284–6
ripple drift, 278
wavy, 314
wind ripple, 280
Landsat, 406
Langden Brook, 91, 92, 93
lateral bars, 17, 114, 123, 134, 136, 181, 286
Lees Valley, 243
Lillian Creek, 381
linguoid bars, 16, 42, 181, 375, 379
linguoid current ripples, 279
Little Ice Age, 223
load casts, 375, 380
load structures, 323
lobate bars, 121, 381
lobe dissection, 77–8, 121
lobe migration, 252
lobe progradation, 136–7
longitudinal bars, 17, 379, 381, 383, 386, 398
longitudinal bedforms, 44
longitudinal ridges, 35
Lunde Formation, 356

Malay Basin, 335
massive gravel beds, 156
mean annual flood, 113, 117
meandering anabranches, 268
meandering channels, 81–2
meandering parameter, 105
meandering rivers, 27–8
meandering streams, 74, 143
medial bars, 17, 83–4, 123, 132–3, 210–11, 296, 299
deposition, 76
erosion, 143
evolution, 136–7, 272
flow around, 123
lamination, 286
sedimentation, 132–3
megaforms, 125
megaripples, 42, 295
Meghna River, 257
Mesaverde Group, 305–32
mesoforms, 30, 42–3, 52, 91, 96, 292
microforms, 42–3, 52, 91, 96, 292
Millstone Grit Series, 291, 295
mining activities, 223–4
Missoula flood basin, 152
mixed reservoirs, 338
modelling software, 357–9
molasse sediments, 405, 411
monsoon, 257
Morecambe Field, 335
morphological units, 74–9
Morrison Formation, 327
mud drapes, 58, 288, 375
mud islands, 201
mudstones, 292, 396

multiple-row bars, 28
multistorey sandbodies, 8, 181, 299

Nigeria, wetlands, 196
nodal avulsion, 196
nodal reaches, 265, 268, 271
node migration, 274
North Horn Formation, 327
North Sea fields, 335, 337, 344
North Tyne River, 206, 210, 223

Ohau River, 80–1, 115
oil recovery, 341, 359
oil–water contacts, 348–9
Okavango delta, 196
open framework gravels, 42, 150–1, 153, 171, 174, 386–7
overbank deposits, 121, 177, 181–2, 188–9, 191, 196, 296
overbank flooding, 125, 188–9
overbank splays, 123
overland flow, 198
overpassing, 44
ox-bow lakes, 196

Padma River, 257
palaeocurrents
Castlegate Sandstone, 310–12
in channel deposits, 58
Rough Rock, 292–3
palaeohydrology, 113, 116
paleosols, 189, 202
particle size, 83, 94
peat deposits, 58
Peco Field, 338
pelites, 370–1, 375, 380
perched channels, 198
permeability, braided reservoirs, 335
permeability barriers, 2, 347, 353
permeability profiles, 352–3
petroleum provinces, 334
photogrammetry, 80, 143
piedmont conglomerate facies, 307
piedmont fans, 201
placer deposits, 381, 385
Platte River, 325
point bars, 17, 22, 298, 381
accretion, 47, 123
cut-offs, 77
falling stage, 44
grain sizes, 53
high flow, 43
lamination, 286
meanders, 74, 83, 197
ponding, 58, 121
pool deposits, 157, 159–60, 173
pool heads, 74
pool-bar units, 74, 79
pore pressures, 46
post-confluence bars, 131
Pot Clay Coal, 292
Price River Formation, 305
principal component analysis, 407, 409, 411
Profitis Ilias Subgroup, 400
INDEX

progradational wedges, 327
prograding bars, 386
provenance studies, 398–400, 405
Prudhoe Bay Field, 334–5, 349, 354, 356, 359
pseudoinbrication, 43, 58
pumping tests, 163
Pyrenees, 178
pyrite, 371, 375
quantitative models, 49
quartzite, 370–1, 375, 377, 379–81, 383
radar, ground-probing, 164–5
radar facies, 166
Rambla Saltador, 411
random avulsion, 196
Rapti River, 189, 199, 201
reach length, 115
reactivation surfaces, 58, 154, 280–1, 284, 294–5, 318, 320, 375
regime theory, 27, 80
relative discharge, 32
remote sensing, 405–12
reservoir architecture, 329
reservoir characterization, 333, 362
reservoir continuity, 340
reservoir cross-sections, 352
reservoir engineering, 306–7, 335
reservoir pressure, 350
reservoir simulation, 351, 355, 361
retirement, embankments, 272–3
Rhine valley, 147–8, 164
Rhône, River, 211
Rhodes, 389–403
ribbon sand bodies, 185
ridge and swale topography, 286
riffle bars, 57
riffle zones, 32–3, 38
riffles, 16–17, 42, 47, 52, 74, 121, 381, 383
rill marks, 44, 58
Rio Aguán, 197
Rio Carboneras, 411
Rio Chapagua, 197
Rio Grande Rift, 178
rip-rap, 235–6
ripples, 42–3, 49
counter-current, 281
current, 375
oscillation, 320
river management, 239, 243, 259
riverbank protection, 231–2, 243
Rosedale Basin, 292
rotation avulsion, 124
Rough Rock, 291–304
sand flats, 325
Sand Rock Mine Coal, 291, 296, 302
sand waves, 42, 375
sand wedges, 58, 375
sand-bed rivers, 36–7, 41, 43, 115
sand-gravel rivers, 37, 41
sandbody sizes, 3
sandflats, 17
sandstone, 390, 393, 395–6
sandy cross-sets, 155

Sarir Group, 334–5
Saskatchewan River, 191, 201, 325
satellite imagery, 262, 264, 266, 268
scale effects, 3, 4, 5
scour, 272
scour axis orientation, 142–3
scour axis rotation, 137
scour depth, 33–4, 129–30
scour fill deposits, 143, 173, 279–81, 286, 374
scour holes, 131–2, 135–6, 327, 374
scour pools, 76, 83, 149, 284
scour surfaces, 173, 181, 191
scour zones, 32–3, 38, 40
scroll bars, 17, 52, 57, 288
sea-level changes, 59, 292, 308
seateaths, 291
secondary anastomosis, 48
secondary channels, 197–8
secondary circulation, 83
sediment flux, 125
sediment load variations, 80
sediment mixing, 405–6
sediment rating curve, 261
sediment size, Ashley River, 250, 252
sediment sorting, 82–4, 89
sediment storage, 264–5, 269
sediment supply, 25, 110, 325, 327–9
sediment transport rate, 30, 41
separation zone bars, 131
sequence boundaries, 315, 320, 322
sequence stratigraphy, 305, 308, 310
Severn River, 205–8, 210–11, 215
Sevier Orogeny, 305, 307
sheet braided deposits, 325, 330
sheet floods, 160, 380, 398
sheet sands, 324–5, 356, 362
sheet splays, 187–8, 191
sheet thickness, 326–7
Sherwood Sandstone Formation, 335, 356
shoreface deposits, 314, 320–1
shoreline facies, 307
side bars, 16–17, 32, 38, 40, 52–3, 379, 386
silcrete, 26, 45
simple bars, 386
sinuosity, Brahmaputra, 264, 267
sinuosity parameter, 105
sinuous thalwegs, 123
Sirte Basin, 334
Siwalik Group, 199, 202
Siwalik Hills, 59, 178, 195, 199
slab failure, 269
slack-water sediments, 121, 159
slice mapping, 352
slip faces, 84
slipface angles, 284
slumped banks, 45–6
Snorre Field, 358
South bar Formation, 126
South Belridge Field, 339
South Tyne River, 205–11, 215, 223–4, 226
spanwise ridges, 91
spectral density, 97
spiral flow, 35–6, 39, 42, 110
INDEX 419

stacked bars, 375, 379, 381, 383
stacked scour fills, 279
Statfjord Formation, 336–7, 343, 349, 354, 356
stepped hydrographs, 121
Sternberg’s Law, 89
stochastic modelling, 355–9
storage elements, 248
storage zones, 265, 269
stratification
 distorted, 278
 horizontal, 278
 parallel, 278
 planar, 53, 57
stream capture, 78, 196
stream power, 80, 115, 198
Sunwapta River, 4, 83, 120, 130, 131, 136
superposition, bars, 59
suspended load streams, 25
swales, 201
swamp deposits, 310
tabular splay, 188
Tay, River, 201, 231, 233, 235, 239
tectonic effects, 59, 199, 308, 327
Teesta, River, 257, 267, 273
terminal moraines, 147–8
terrace bluffs, 148
terrace facies, 386
terrace surfaces, 116
terraces, 371
 Rhine, 148
thalweg splits, 28
thalwegs, 17, 23, 41, 44, 74, 76–7, 82–3, 106
Thari Formation, 389–403
theoretical stability analyses, 26
Thomson River, 197
thrust sheets, 390, 399
till bluffs, 223
time domain reflectometry, 168
toe scouring, 269
toesets, 281, 286
tongue structures, 121
topsets, 286
 plane bedded, 281
tortuosity ratio, 110
total sinuosity, 21–2, 24, 106, 113–14
trace fossils, 314–15, 321
traction carpet, 159
transgression, 321, 327
transverse bars, 16, 42, 77, 84, 132–3, 185, 375, 385–6
 linguoid, 375
transverse clast dams, 91, 99–100
transverse ribs, 43
trapping potential, 91
tributary bars, 17, 32, 42, 57, 131, 288
tributary-mouth deposits, 52
trough deposits, 153–5, 158, 173
Tummel, River, 231, 233, 235
turbulence template, 91
turbulent flow, 42, 82, 91, 97–102
turbulent intensity, 96
turbulent shear stress, 96
Tyne River, 205, 208, 210–11
unit bars, 16–17, 35, 41, 43, 45, 47–8, 52, 57, 130
upstream accretion, 281, 286
Vacas Muertas Field, 335
valley slope, 23, 27
Vati Group, 389
vegetation, and bank stability, 26
veneer sediments, 42
vertical accretion, 286
vertical stacking, 299
vertical winnowing, 90
wall jets, 38
Wasatch Plateau, 307
wash load, 260, 269
wave ripples, 58
weathering, 89
Welkom Goldfield, 369–70
well performance, 354
well testing, 342–5
White River, 115
width/depth ratio, 114, 286, 300
Witpan Conglomerate, 369–88
Witwatersrand Supergroup, 369–88
Würm stage, 147–8
Wytch Farm Field, 335, 356
Zaire River see Congo