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Fig. 18. Samples of the three main types of deformation bands involving cataclastic deformation and compaction,
and 3D microCT models of a volume of each sample (indicated by rectangle). Each model shows pores (blue) and
mineral phases (white), and therefore visualizes the porosity of the bands. (a) Single CSB from Entrada Sst near
Goblin Valley, San Rafael Desert, Utah (see text for discussion of regions 1-3). (b) SECB from the Buffington
Window (Muddy Mountains) near Valley of Fire State Park, Nevada. (¢) PCB (sinusoidal) from highly porous
sandstone layer in Buckskin Gulch, southern Utah. Note variations in amount of pores (porosity) along and within

all the bands.

to the line of intersection between the sets, which is
generally parallel to the strike of the nearest associ-
ated fault (Fossen & Bale 2007). Where the bands
deviate from the conjugate (bimodal) to a more
complex polymodal pattern, the anisotropy is
reduced and the effect of the bands is to reduce
the general flow rate.

In terms of distribution, bands in the extensional
regime are typically clustered around faults. For
example, Hesthammer & Fossen (2001) found
that c. 75% of all deformation bands in the Gullfaks
Oilfield in the North Sea were located in the
damage zones of faults. Because most deformation
bands in the extensional regime are components of
fault structures and many wells are intentionally
placed away from seismically resolvable faults
and their damage zones, they do not usually affect
production significantly. The main exception to
this general rule reflects the fact that deforma-
tion bands also extend beyond the tips of faults
as fault tip damage zones; this may help compart-
mentalize some reservoirs, or influence the flow
pattern around fault tips as simulated by Rotevatn
& Fossen (2011). This is in contrast to fault-damage
zones in fractured reservoirs, where fractures can
provide hydrocarbon storage and increased recov-
ery for wells that intersect them (e.g. Hennings
et al. 2012).

In the contractional regime, bands are much
more evenly distributed throughout the reservoir
and, to a much lesser extent, associated with faults

(Soliva et al. 2016). They may therefore affect
fluid flow in a different way from the clustered
bands in the extensional regime, but not necessarily
in a negative way. In this context it is interesting to
note that SECB and PCB formed during contraction
tend to be strongly dependent on lithology, in the
sense that they only form in highly porous and
coarse-grained parts of sandstone reservoirs and
slow down the flow rate through these parts of the
reservoir (Fossen er al. 2011). These porosity-
sensitive bands would therefore homogenize the
reservoir macro-permeability and thereby poten-
tially improve the sweep.

Concluding remarks

Deformation bands are common constituents in
deformed porous sandstone reservoirs and represent
porosity- and permeability-reducing tabular ele-
ments where compaction is involved. It is useful
to separate compactional bands into three distinct
types which differ with respect to thickness, proper-
ties, geometry and distribution, and form under dif-
ferent stress states and lithological conditions. Data
presented here suggest that CSB (compactional
shear bands) form where porosity at the time of
deformation was 15%, SECB (shear-enhanced
compaction bands) require higher porosities
(. 20-25%) and PCB (pure compaction bands)
require porosities close to 30%, although the exact
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Fig. 19. Graph showing the relation between host-rock permeability and band permeability. The data show a large
variation in permeability reduction, from O to 6 orders of magnitude depending on the type of data. The relative
amount of cataclasis and therefore fluid-flow-reducing properties of each class of structure is illustrated above the

graph. See Ballas et al. (2015) for more information.

cut-offs may vary according to other lithological
parameters. SECB and PCB form under low differ-
ential stress most easily obtained in the contrac-
tional regime, while CSB can form in any tectonic
setting. SECB show less cataclasis than CSB, and
therefore reduce permeability to a lesser extent.
All categories of deformation bands tend to show
systematic orientations that can be related to the
local principal strain or stress axes. The simplest
pattern is conjugate sets with acute angles that are
higher for SECB (typically 80—90°) than for CSB
(typically 40—50° in the extensional regime, around
60° in the contractional regime). Where the orienta-
tions of the principal stresses are known or can be
inferred, deformation band orientations can to
some extent be predicted and implemented into res-
ervoir models. However, bands developing prior to
fault formation in an area may have different orien-
tations from those forming at a later stage, because

of the stress-perturbations around and between
faults. Maerten et al. (2006) modelled such stress
perturbations to predict the orientations of subseis-
mic faults in a part of the North Sea rift, and a sim-
ilar approach can be used to predict the orientation
of conjugate sets of CSB and therefore their influ-
ence on fluid flow during production.

In general, deformation bands introduce a per-
meability anisotropy to the reservoir or parts of
the reservoir, whereas they do not tend to have seal-
ing properties. When considering their role in
hydrocarbon reservoirs, it is important to evaluate
each reservoir separately in terms of the many
parameters and conditions that influence how fre-
quent deformation bands are, where they occur rel-
ative to larger structures, the type(s) of band, their
permeability-reducing properties, and their lateral
and vertical continuity. The most important variable
is probably the amount of cataclasis involved,
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because it is directly related to the reduction in
porosity and permeability.
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