accessibility 14
adobe 2, 91
construction process 92
low energy requirement 8–9, 91
Pays rémois 120, 121, 122, 127
Portugal 92, 93, 94–99, 94
chemistry 95, 97
composition 95, 96–98, 99
insoluble residue 95, 97
mineralogy 95, 96–97
physical/mechanical properties 95–96, 98–99
texture 95, 97–98
sources and function 4
see also earth construction
’africano’ 40, 42
aggregate
Austrian Alps 71–77
GIS-derived data 71, 74, 75–76, 77
grain size and shape 73, 74, 75, 76, 77
ground truthing 71–77
petrographic analysis 73, 74, 77
quality 76–77
rock types 73, 74
sample analysis 73, 76
XRF analysis 73
calcareous, in lime mortar 277, 278
depletion 59, 60
embodied carbon dioxide 9
global demand for 2
intrusive rocks 217–226
cataclasis 219
foliation 219, 220
grain size 218–219, 220
microcracks 218
microstructure 219, 221
mineral composition 218, 220
multivariate analysis 220, 221–224
partial least squares 220, 221–222, 223, 224
principal component analysis 220–221, 222–224
resistance 218–219
studded tyre test 218, 224, 225
technical tests 218, 220, 223
production 59–60
Best Available Concept 7, 63–69
ergy use 61
Europe 2007–2013 64, 66
inventory and planning 64, 65
land use conflict 60–61
mass balance 61
pollution and emission 62–63
quarrying and production 64, 65
reclamation of mined-out areas 64, 65
sustainability 60, 65, 66–69
transport 62–63
use in construction 64, 65
recycling 8, 11
sources and function 4
unit value 3
aggregate technology 63–64
Agios Theodoros quarry packstone 146, 147, 148, 159–160
mechanical properties 155–156
physico-chemical properties 150–151, 152, 153, 154
salt weathering 156, 157
air lime see quick lime
alla prima (wet on wet) technique 294
Allard Pierson Museum, Amsterdam 176, 177
alluvial fans, as aggregate, Austrian Alps 71, 73, 74, 76, 77
alluvial valley fill, as aggregate, Austrian Alps 71, 73, 74, 76
Alps, Austria, aggregate 71–77
Alveolinidae 119
Am Kathagen quarry, Bentheim Sandstone 166, 167, 169
Anogyra quarry packstone 146, 147, 148, 160
mechanical properties 155–156
physico-chemical properties 151, 152, 153
salt weathering 156, 157, 158
anthroposphere 6, 7
Antwerp Town Hall 174
Aqueduct of Segovia, stone decay 105, 106
Aquila, spolia 27, 29
ArcGIS 10 software 72
Arch of Constantine 25–26
archaeology, construction material technology 12–13
architecture
influence of geology on heritage 8, 101
vernacular 91, 101, 113
Argentina Square see Piazza de’ Calcari
asphalt 5
unit value 3
Asvestolithos Mitserou 146, 155–158
‘Augustus Bath’, Badminton House 31
Austrian Alps, aggregate 71–77
Austrian Mineral Resources Plan 71
Aveiro, adobe 92–99, 94
Babakale Yolu Quarry 135, 143
tuff 136, 137, 138, 139, 140–143
Banc Franc chalk 204, 206
Baths of Diocletian, building re-use 24, 25
Belgium, Obernkirchen Sandstone 174–175
INDEX

Bentheim Sandstone 163
geology and lithostratigraphy 165, 166, 167
mineralogy and material properties 167–169, 170, 171
use in Netherlands
earliest 171, 172
later 171, 172, 173
weathering 178–179
bentonite, in sludge waterproofing 80, 82, 84–85, 88
Best Available Concept, aggregate production 7, 63–69
‘bianco e nero antico’ 40, 44
binders
air-hardened, source and function 2, 5
down-cycling 10, 11
hydraulic 2
energy requirement 9
source and function 5
inorganic, historical use 13
bioremediation, residual sludge 81
bitumen
in asphalt 5
unit value 3
black crust, particulate matter 178, 239–240
breccia, San Severo marble 39–40
‘breccia corallina’ 40, 42
Bremer Sandstone see Obernkirchen Sandstone
brick clay, unit value 3
bricks 2
Cormicy sand grey, Pays rémois 120, 121, 122, 127
down-cycling 11
embodied carbon dioxide 9, 10
fired 2
Pays rémois 120, 121, 127, 128
sources and function 4–5
Vargas Palace 255–265, 260, 261
see also adobe
Brundtland definition of sustainable development 6
Budapest, building decay 15–16, 239–250
burning, quick lime, historical 13
burrstone, Pays rémois 120, 127, 128
calcarenite
Cyprus 146, 147–149
mechanical properties 155–156
physico-chemical properties 151, 152, 153, 154
salt weathering 156–158
Puglia 183–198
composition 187–188, 189–191
conservation 184–186, 188
water-repellent treatment 189, 195–198
durability evaluation 194–195
geology 186
physico/mechanical properties 187–189, 191–194
porosity 188, 189, 191, 192–195
quarries 184, 185, 186
salt weathering 185, 189
sampling 186–187
weathering 184, 188
XRD 187, 191
calcite
in lime mortar 281
source and function 5
cancelli 36
capillarity 229, 231, 236
capillary zone 229
carbon dioxide
aggregate 9, 10, 62–63
cement clinker production 9, 10
embodied 8, 9
stone 9, 10
carbonate rock
Austrian Alps aggregate 73, 74, 75
Cyprus building stone 145–160
carbonation degree, lime mortar 263–264, 266, 267, 277, 280, 281
Castel Sant’Angelo, building re-use 24, 25
cataclasis, granitic aggregate 219
cement
clinker production 2
carbon dioxide 9, 10
energy requirement 9
unit value 3
cementation, heterogeneous 186
ceramics
down-cycling 11
sources and function 4–5
see also Zsolnay ceramics
Cerithium denticulatum 119, 120, 121
Cerithium limestone, Pays rémois 119, 120–121, 120, 123, 128
chalk
Cyprus 146
mechanical properties 155–156
physico-chemical properties 150–154
Pays rémois 115, 118, 120, 122
see also Vernon chalk
Chapel of Christ of Caloco, granite decay 104, 105
chert, Pays rémois 119, 120, 122
colorpleth maps, Pays rémois 115, 118, 119, 122
CILECCTA project 67
‘cipollino rosso’ 36, 42
‘cipollino verde’ 36, 43
Classe, San Severo complex, marble trade 36, 41
clay
brick
sources and function 4–5
unit value 3
ceramic, unit value 3
clay bricks
down-cycling 11
embodied carbon dioxide 9, 10
clinker see cement, clinker production
Collado Hermoso, building stone 107–108, 109
concrete 2
embodied carbon dioxide 9, 10
Pays rémois 120, 121, 123
sludge re-use 80
INDEX

conglomerate, Trépail, Pays rémois 118, 120, 122, 127
conservation
 of decayed structures 16
 Vargas Palace 253–272
 Pendelikon marbles, nanostructured coatings 293–301
 Puglian calcarenites 184–186, 188
 water-repellent treatment 189, 195–198
 spatial analysis 114
Constantine, Emperor, building re-use 25–26
Constantinople
 Late Antique marble trade 35
 spolia 28–29
Construction and Demolition management 32
 construction materials
 decay and weathering 10, 15–16, 103–104
 diversity 2
 GIS-database, Pays rémois 113, 115–129
 historical context 1–2, 12–13
 location and transport 12
 processing 12–13
 unit value 2, 3
 see also
 aggregate, stone
 contact angle measurement 298, 299
copolymerization, TiO2-SiO2-PDMS nanocomposites 288, 291
Cormicy sand grey bricks 120, 121, 122, 127
cost analysis 52, 54, 56
 Cost-Effectiveness Analysis
 masonry end-of-life phase 47–48, 49, 54
 hierarchy of goals 48, 50, 51
cultural geomorphology, Sierra de Guadarrama 102, 104–109
cultural heritage
 building re-use 23–32
 conservation 16
 use of GIS 113, 114
 Vargas Palace 253–272
effect of pollution 239
Cyprus
 building and decorative stone 145–160
 drilling resistance 150, 155–156, 158
 mechanical properties 150, 155–156
 permeability 154–155
 physico-chemical properties 149–150, 151–155
 porosity 149–154
 salt weathering 150, 156–158
debis cones, as aggregate 71, 73, 74, 76, 77
decay
 construction materials 10, 103–104
 prevention and mitigation 15–16
 Sierra de Guadarrama 104–110
deforestation, intrusive aggregate 219
Deister Sandstone 177
diatomite, unit value 3
digital elevation model 72, 73, 76
diorite, San Severo complex 40
Ditrupa limestone, Pays rémois 118–119, 120, 122, 123, 127
Ditrupa strangulata 118–119, 120
dolomite
 Cyprus 149
 source and function 5
dolostone
 Austrian Alps aggregate 73, 74, 75
 Sierra de Guadarrama 103, 107
down-cycling 10, 11
durability 15
 calcarenites 194–195, 198
 map 118, 124, 126, 128
dust, attic
 particulate matter 240–250
 composition 246, 247, 248
 environmental impact 246
 microspectroscopy 240, 243, 244, 245, 246, 249
 sulphates 248–249
 XRD 240, 243, 244, 249
earth construction 91–99
 global distribution 91, 92
 Portugal 92–99
 see also
 adobe; rammed earth; wattle and daub
Earth systems, and use of natural resources 6, 7
 effectiveness analysis 52, 56
 efficiency see resource efficiency
 El Escorial 101, 102
 El Espinar
 rock weathering 104
 Chapel of Christ of Caloco 104, 105
effect-of-life-phase
 masonry 47–57
 cost analysis 52, 54
 Cost-Effectiveness Analysis 47–48, 49
effectiveness analysis 52
 effectiveness-cost ratio and matrix 54, 55, 56
energy, embodied 9, 10
energy minerals 1, 2
 unit value 2, 3
energy use, aggregate production 61
European Commission, Construction Products
 Directive (1989) 60, 66
Euville limestone, Pays rémois 120, 121, 123, 127, 128
 exhaustibility 6
extraction industries
 aggregate production 60–61
 environmental protection 13
 history 12–13
 knowledge and processing 13–14
 sustainability 6, 8, 60
Fatma Gerdan Quarry 135, 143
tuff 136, 137, 138, 139, 140–143
feldspar, in aggregates 218, 220, 222
 ‘fior di pesco’ 40, 43
‘flint’, *Pays rémois* 119, 120, 122
fluorosilicon, polymeric matrix 294
fly-ash particles 178, 240, 249–250
foliation, intrusive aggregate 219
fossil fuels 1, 2
Four Tetrarchs, Sack of Constantinople *spolia* 28–29
freeze-thaw resistance, nanocomposite coating 299
Freilichtbühne quarry, Bentheim Sandstone 166, 169, 170
gabbroid rock
as aggregate 218–226
microstructure 221
mineral composition 222
multivariate analysis 222–223
petrographic features 221, 222, 223–226
technical properties 223–226
Gallipoli Castle Bastion 187
Geographic Information Systems (GIS)
building materials
Pays rémois 113, 115–118, 121–129
see also *Pays rémois*, GIS-database
conservation 114
evaluation of aggregate quality, Austrian Alps 8, 71, 73, 74, 76–77
Geological and Geophysical Institute, Budapest, pollution 240, 241, 242
geology, influence on architectural heritage 8, 101
German Wealden sandstone 163–164, 177–178
Germany, masonry end-of-life phase 47–57
Cost-Effectiveness Analysis 47–48, 49
Gerolakkos quarry limestone 146, 147, 148, 149, 160
mechanical properties 155–156
physico-chemical properties 150–151, 152, 153, 154
salt weathering 156, 157, 158
‘giallo antico’ limestone 38, 44
Gibellina Nuova, *spolia* 31
glass, recycling 9–10
gneiss
Austrian Alps aggregate 73, 74, 75, 77
Sierra de Guadarrama 102, 103, 106, 107, 108
Göbekli Tepe, dimension stone processing 12–13
grainstone
Cyprus 146, 148
mechanical properties 155–156
physico-chemical properties 150–154
Puglia 189–190
Grand Tour, *spolia* 31
granite
Austrian Alps aggregate 73, 74, 75, 77
embodied carbon dioxide 9, 10
San Severo complex 40, 43
Sierra de Guadarrama 102, 103
buildings 104–106
weathering 104
‘granito del Foro’ 40
‘granito della Colonna’ 40
INDEX

granitoid rock
as aggregate 218–226
microstructure 221
mineral composition 222
multivariate analysis 222–223
petrographic features 221, 222, 223–226
technical properties 223–226
gravel
as aggregate 4, 59
Austrian Alps 71–77
Gravina Calcarenite 184, 186, 187
composition 190–191, 195
durability evaluation 194–195
material properties 191–195
water-repellent treatment 189, 195–198
weathering 188
Gros lienz chalk 204, 206
ground truthing, aggregate quality 71–77
gypsum
particulate matter 178, 206, 240, 243–250
unit value 3
hardening, quick lime 275–282
history 13
Hauptsandsteinbank, Obemkirchen Sandstone 164, 166
Herengracht, Amsterdam 177
hierarchy of goals, CEA, masonry 48, 50, 51
hornblende, in aggregates 218, 220
hydrocarbons, contamination 79, 81, 89
Ile-de-France cuesta 115, 116
industry minerals 1, 2
unit value 2, 3
intrusive rock, as aggregate 217–226
Italy, calcarenite 183–198
Karpasia quarry limestone 146, 147, 148, 149, 160
mechanical properties 155–156
physico-chemical properties 150–151, 152, 153, 154
salt weathering 156, 157, 158
Kivides quarry packstone 146, 147, 148, 160
mechanical properties 155–156
physico-chemical properties 150–151, 152, 153
salt weathering 156, 157, 158
Kızılkecili Quarry 135, 143
tuff 136, 137, 138, 139, 140–143
La Granja Palace 101
land rehabilitation, residual sludge 81
land use, aggregate production 60–61
landfill, sludge disposal 12, 79, 80, 81, 82, 84–85
lapis Atracius see ‘verde antico’
lapis Lacedaemonius see ‘porfido verde antico’
lapis Porphyrites see ‘porfido rosso antico’
Late Antiquity, Ravenna marble trade 35, 36, 41–44
Lateran Basilica, building re-use 26
Life Cycle Assessment 32, 48, 54, 60, 67, 68, 69
Life Cycle Cost 60, 67, 68, 69
Life Cycle Working Environment 48, 54
lime
calcitic, in lime mortar 277, 278
production, Middle Ages 27
source and function 5
unit value 3
see also quick lime
limestone
Austrian Alps aggregate 72, 73, 74, 75, 77
bioclastic
Cyprus 146, 149
mechanical properties 155–156
physico-chemical properties 151, 152, 153, 154
salt weathering 156, 157, 158
Cerithium, Pays rémois 119, 120, 123, 128
Ditrupa, Pays rémois 118–119, 120, 122, 123, 127
Euville, Pays rémois 120, 121, 123, 127, 128
Göbekli Tepe 12–13
lacustral Limnaea, Pays rémois 119, 120, 121
Lutetian 203–215, 204
durability evaluation 206–208, 210–214
atmospheric pollution 206–207, 214
salt weathering 206, 211–214
lithostratigraphy 205
petrography 208–209
porosity 206, 208–210
roughness 207, 213–214
types 204, 205, 206
miliolid, Pays rémois 119, 120, 123, 127, 128
Mokattam, salt weathering simulation 231, 232, 233–236
nummulitic, Pays rémois 120, 122
orange granular Cerithium, Pays rémois 120–121
potamide, Pays rémois 119, 120, 128
reef
Cyprus 146, 149
mechanical properties 155–156
physico-chemical properties 151, 152, 153, 154
salt weathering 156, 157, 158
Saint-Maximin, Pays rémois 120, 128
Saint-Pierre-Aigle, Pays rémois 120, 128
San Severo marble 37–38, 44
Savonnières, Pays rémois 120, 121, 123, 128
Sierra de Guadarrama 102, 103, 107–109
siliceous, Pays rémois 120
silicified, Pays rémois 119, 120, 122
source and function 5
sublithographical, Pays rémois 119, 120, 122, 128
Limnaea limestone, Pays rémois 119, 120, 120
Lower Saxony Basin, Lower Cretaceous sandstone 163–165
Luserna stone quarry basin 80, 88
Lympia quarry packstone 146, 147, 148, 159
mechanical properties 155–156
physico-chemical properties 150–151, 152, 153, 154
salt weathering 156, 157
Manzanares Castle 101
marble
embodied carbon dioxide 9, 10
Late Antique San Severo complex 35–44
polychrome 36
white-grey 36, 40–41
Pendelikon 293–301
marl, Austrian Alps aggregate 74, 75, 76, 77
marmor Carystium see ‘cipollino verde’
marmor Celticum see ‘bianco e nero antico’
marmor Claudianum see ‘granito del Foro’
marmor lassense see ‘cipollino rosso’
marmor Luculeum see ‘africano’
marmor Numidicum see ‘giallo antico’
marmor Phrygium see ‘pavonazzetto’
marmor Sagarium see ‘breccia corallina’
marmor Synnadicum see ‘pavonazzetto’
masonry
end-of-life phase 47–57
Cost-Effectiveness Analysis 47–48, 49
hierarchy of goals 48, 50, 51
mass balance, aggregate production 61
material efficiency 7
Material Flow Analysis 48, 50–52, 53, 54
Mausoleum of Hadrian, building re-use 24, 25
Mausoleum of Santa Constanza, building re-use 26
metal materials, Pays rémois 120, 121, 123
metal ores 1, 2
unit value 2, 3
mica
in aggregates 218, 220, 222
unit value 3
Microdium calcareous sandstone, Pays rémois 118–119, 120, 122, 127
Middle Ages, building re-use 27–29
miliolid limestone 119, 120, 123, 127, 128
minerals, annual total amount extracted 1
monadnocks, Ile de France 115, 116
mortar 2
lime, air-hardening 275–282
binder-to-aggregate ratio 275, 276, 277, 280, 281
carbonation degree index 277, 280, 281
packing density 275–276, 277–280, 281–282
physical-mechanical properties 280–281
pore size distribution 280, 281
porosity 276, 277, 278, 280, 281
standards 275, 281, 282
strength 280, 281
voids ratio 276–277, 278
water-to-binder ratio 276–277, 278, 279, 281
repair rendering 16, 254–272
source and function 5
mortar (Continued)
standards 275, 281, 282
Vargas Palace
original 255–256
characterization 259–261
repair rendering 254–255
adhesion 257, 263, 264, 271
characterization 257, 259
chromatic differences 270–271
mineralogy differences 263–264, 266, 267
preparation 256–257, 258
shrinkage 257, 261, 262, 263, 271
textural differences 267–270
workability 257, 261, 271
morVar 255, 260, 261
mosaic floors, re-use of Roman stone 27, 28
mud, as binder 5
Museum of Applied Arts, Budapest, pollution 240, 241, 242
nanocomposites
Penelikon marble 293–301
nanosilica coating 294
neoclassicism, spolia 30–31
Nesselberg Sandstone 177–178
Netherlands
imported building stone 163–179
imported German stone, earliest use 171, 172
Neues Museum, Berlin, spolia 31–32
Ningbo Museum, China, material re-use 32
Norway, aggregate depletion 59, 60, 62, 63, 64
Notre Dame de Vetheuil 204
Nummulites laevigatus limestone, Pays rémois 120, 122
Obernkirchen Sandstone 163
geology and lithostratigraphy 163–165
Hauptsandsteinbank 164, 166
mineralogy and material properties 167, 168, 169, 171
use in Netherlands 173–177
weathering 178–179
Octaviae Porticus, building re-use 25
Old St Peter’s, Rome, building re-use 26
opus sectile 36, 38, 44
Orbitolites complanatus 119
Pachna quarry grainstone 146, 147, 148, 160
mechanical properties 155–156
physico-chemical properties 150–151, 152, 153
salt weathering 156, 157
packing density, lime mortar 275–276, 278–280, 281
packstone
Cyprus 146, 147–149
mechanical properties 155–156
physico-chemical properties 150–154
INDEX
Palazzo Cancelleria, Rome, spolia 29, 30
Palazzo Crescenzi, Rome, building re-use 27
Palazzo de Lorenzo, Sicily, spolia 31
Palazzo della Torre, Udine, spolia 31
Palazzo Personé, Lecce 187
Palazzo Savelli, building re-use 29
PANTURA project 67
Paris, Lutetian limestone 203–215
partial effectiveness value 52, 55
particulate matter 178
and degradation of architectural ceramics 239–250
‘pavonazzetto’ 39–40, 43
Pays rémois
chloropleth maps 115, 118, 119, 122
durability map 118, 124, 126, 128
geography and geology 115, 116, 117
GIS-database 113, 115–118, 121–129
building materials 121–129
SDE 118, 122–124, 127, 128–129
history 114
local stone 118–120, 123, 124
non-stone materials 121
regional or extraregional stone 120–121, 123, 124
PDMS (polydimethylsiloxane) see TiO2-SiO2-PDMS
nanocomposites
Penelikon marble
nanocomposite coating 293–301
contact angle 298, 299
effectiveness of treatment 294–298, 301
freeze-thaw resistance 299
lamination technique 294, 295
porosity and absorption 297, 298, 299
reversibility 299–300
SEM/EDX data 294, 295, 296, 297, 299, 300
surface roughness 297, 298, 301
perlite, unit value 3
Petra Gerolakkou 146, 155–158
Petra Karpasias 146, 155–158
Petra Lympion 147, 155–158
Petra Pachnas 147, 149, 155–158
Philadelphia of Constantinople, Four Tetrarchs spolia 29
photocatalytic oxidation reaction 16, 285, 290, 291
phyllite, Austrian Alps aggregate 73, 74, 77
Piazza de’ Calcari, lime production 27, 28
Piedmont, residual sludge 80–89
Pierre de Paris see limestone, Lutetian
Pierre de Vernon 203
Pietra Leccese Calcarenite 184
Pieve Vergonte see sludge, dimension stone processing, pilot site testing
Pisa Cathedral, St Ranieri portal spolia 28
pollution
aggregate production 62–63
atmospheric, Lutetian limestone 206–207
building decay 15–16
effect on Zsolnay ceramics 239, 240
residual sludge 79, 81, 89
‘porfido rosso antico’ 38–39, 43
‘porfido verde antico’ 38, 43
porosity
building and decorative stone, Cyprus 149–154
calcarenite 188, 189, 191, 192–195
lime mortar 276, 277, 278, 280, 281
Lutetian limestone 206, 208–210
Pendelikon marble 297, 298, 299
porphyry, San Severo marble 38–39
see also ‘porfido rosso antico’; ‘porfido verde antico’
Portland cement 2
energy requirement 9
source and function 5
portlandite, lime mortar 277, 278
Portland, earth construction 92–99
Potamides limestone 119, 120, 128
Prastio quarry packstone 146, 147–148, 160
mechanical properties 155–156
physico-chemical properties 151, 152, 153, 154
salt weathering 156, 157, 158
preservation, heritage structures 3
preservation orders 29–30
Proconnesos marble 35, 41–42
Puglia, calcarenite 183–198
g eo l ogy 186
pumice, unit value 3
quarries
rehabilitation 12, 81, 85, 88
use of sludge 80
quarrying see extraction industries
quartz, in aggregates 218, 222
quartzite, Austrian Alps aggregate 73, 74, 75
quick lime 2
historical production 13
source and function 5
rammed earth 2, 91–99
low energy requirement 8–9
Portugal 92, 93
sources and function 4
see also earth construction
Ravenna, Late Antique marble trade 35, 36, 41–44
raw materials
annual total amount extracted 1, 2
and unit value 3
energy issues 8–9
historical context 12–13
location and transport 12
processing 12–13
resource management and efficiency 7–8
secondary use 9–12, 23–32, 79
see also down-cycling; re-use; recycling
sources and functions 4–5
sustainability 6, 7
re-use 10, 11
sustainability 32
traditional materials in built heritage 23–32
Syracuse Cathedral 24
see also preservation orders; recycling
recycling
of resources 6, 7, 9–12, 11
adobe 91
unburnt soil 9
see also down-cycling; raw materials, secondary use; re-use
Reims 114, 116, 117
geomaterials 125, 126
see also Pays rémois
Renaissance, spolia 29–30
Requijada, Virgen de la Vega chapel, limestone decay 108–109, 110
resource efficiency 7–8
resource management 6–7
resource productivity 7
Reubens’ House, Antwerp 175
Roman world, ancient building re-use 24–27
Romberg quarry, Bentheim Sandstone 165, 166, 167, 168, 169
‘rosso de Verona’ limestone 37, 44
roughness, limestone 207, 213–214
Royal Palace, Amsterdam 172, 173, 175
Sack of Constantinople, Portrait of the Four Tetrarchs spolia 28–29
St Mark’s Basilica, Venice, spolia 28–29
St Martin’s Tower, Groningen 173, 174
St Peter’s Basilica, Rome, building re-use 26
St Plechelmus’ Basilica, Oldenzaal 171, 172
St Rombout’s Cathedral, Mechelen 173
Saint-Maximin limestone
Lutetian limestone 204
Pays rémois 120, 128
Saint-Pierre-Aigle limestone, Pays rémois 120, 128
salt weathering 229–236
construction materials 10, 15, 101, 103–104
Cyprus building stone 150, 156–158
experimental simulation 229–231
Mokattan limestone 231, 232
samples 230–231, 235–236
temperature/humidity 230–231, 233, 234
weight change 234–235
weight recording 230, 233–234
Lutetian limestone 206
Puglian calcarenite 185, 189
Vernon chalk 206
San Lorenzo, Genoa, building re-use 27
San Salvatore, Spoleto, building re-use 27
San Severo in Classe complex, Ravenna 36, 37, 38, 39
Late Antique marble 35, 36, 40–44
sand
as aggregate 4, 59
in mortar 2
sandstone
Austrian Alps aggregate 74, 75, 76, 77
calcareous *Microdium, Pays rémois* 118, 120, 122, 127
embodied carbon dioxide 9, 10
Pays rémois 118, 120, 122, 127
Sierra de Guadarrama 102, 103
see also Bentheim Sandstone; Obernkirchen Sandstone
Santa Maria, Cosmedin, mosaic floor 27, 28
Santa María de la Sierra, building stone 109, 110–118
Sant’Eufemia, Grado, building re-use 27
Savonnières limestone, *Pays rémois* 120, 121, 123, 128
schist, Austrian Alps aggregate 72, 73, 74, 75, 76, 77
secondary raw materials, sludge 79
secondary use 9–12, 23–32, 79
see also down-cycling; re-use; recycling
Segovia 101, 102
Aqueduct, stone decay 105, 106
‘serpantino’ 38
serviceability 14
Sierra de Guadarrama 101–110
carbonate buildings 107–109
‘cultural geomorphology’ itinerary 104–109
goalogy 102–103
granitoid buildings 104–106
metamorphic rock buildings 106–107
weathering and stone decay 103–110
silica, nanocomposite coating 294
SiO2 see TiO2-SiO2-PDMS nanocomposites
slate, embodied carbon dioxide 9
sludge, dimension stone processing 12, 79–89
bioremediation 81
contamination 79, 81, 89
grain size 79, 82, 83, 84, 85, 86, 87
hydraulic conductivity 82, 83, 84, 86, 88
laboratory testing 81–82, 83–85, 86, 87
land rehabilitation 81, 82, 85, 88–89
pilot site testing 82–83, 84, 85, 86, 87, 88
re-use as artificial soil 81, 82–83, 85, 88–89
re-use in construction industry 12, 80–81
re-use as filler 80–81, 82, 85, 88
re-use as waterproofing 80, 81, 82, 84–85, 88
secondary raw materials 79
shear strength/stability 82, 83–85, 86, 87, 88
society, material requirements of 6, 7
soil
brick production 2
unit value 3
as construction material 2
sources and function 4
residual sludge re-use 81, 82–83, 85, 88–89
unburnt
low energy requirement 8–9
re-use 11
recycling 9
soot particles 240, 249–250
Sotosalbos Church of San Miguel Archangel,
building stones 107, 108, 109
Spain
goalogy and architecture 101
Vargas Palace 253–272
spatial analysis, building conservation 114
spheres, in dust samples 243–250
spolia 23–24, 26, 27, 28–30
standards, mortar 275, 281, 282
stone
crushed
recycling 11
sources and function 4
see also aggregate
dimension 2
Cyprus 145–160
German sandstone 163–178
history of processing 12–13
Pays rémois 118–121
processing waste 12, 79–89
Puglia 183–198
recycling 11
sludge 79–89
sources and function 4
unit value 3
embodied carbon dioxide 9, 10
studded tyre test, intrusive aggregate 218
sulphates, attic dust 248–249
sulphation 248–250
sulphur gas 239
sustainability 6–12
aggregate production 60
embodied energy 9
energy use and emissions 8–9
extraction industries 6, 8
re-use and recycling 32
resource management and efficiency 6–8
Syracuse Cathedral, building re-use 24
tagique (wattle and daub), Portugal 92
taipa (rammed earth), Portugal 92, 93
technology, archaeological 12–13
technosphere 7
Temple of Apollon Smintheus
goalogy 135
tuff 133–143, 134
chemistry, petrology, mineralogy 139, 141–143
physical properties 135–138, 139–141
provenance 143
TEOS (tetraethoxysilane) 285, 286
hydrolysis 287–288, 291
Terraced Marine Deposits 184, 186, 187
calcarenite weathering 188
composition 189–191
durability evaluation 194–195
material properties 191–195
water-repellent treatment 189, 195–198
tesserae 36
Theatre of Marcellus, Rome, spolia 29, 30
Theatre of Pompey, Rome, spolia 29
tiles, sources and function 4
copolymerization 288, 291
differential thermal analysis 286, 288, 291
DRMS 289, 290, 291
FTIR spectroscopy 286, 287, 288, 289, 291
photocatalytic oxidation 16, 285, 290, 291
product assessment 286
SEM 286, 288, 289, 291
thermogravimetric analysis 286, 288, 291
treatment assessment 289–291
X-ray diffraction 286, 287, 288, 291
transgression, Puglia calcarenous platform 186
transport, aggregate production 62–63
Troodos Ophiolite Complex 147, 148
TTIP (titanium tetraisopropoxide) 285, 286, 291
tuff
calcareous see calcarenite
Temple of Apollon Smintheus 133–143
chemistry, petrology, mineralogy 139, 141–143
physical properties 135–138, 139–141
provenance 143
Turkey, tuff, Temple of Apollon Smintheus 133–143
uranium 1, 2
valley fill, as aggregate, Austrian Alps 71, 73, 74, 76
Vargas Palace, Granada 254, 255
repair rendering mortar 254–255
restoration 253–272
Venetian Republic, spolia 31
Verbano Cusio Ossola quarry basin
residual sludge 80–89
pilot site testing 82–83, 84, 85, 86, 87, 88
verde antico 40, 43
vermiculite, unit value 3
Vernon chalk 203–215, 204, 206
durability evaluation 206–208, 210–214
atmospheric pollution 206–207, 214
salt weathering 206, 211–214
petrography 208–209
physical properties 206, 209–210
porosity 206, 208–210
quarries 204
roughness 207, 213–214
Villacastín Church, granite decay 105–106
Virgen de la Vega chapel, limestone decay 108–109, 110
Vitruvius, Marcus (c.80BC–c.15BC), De Architectura libri decem 275
wackstone
Cyprus 146, 149
mechanical properties 155–156
physico-chemical properties 150–154
waste
dimension stone processing 12, 79–89
end-of-life phase masonry, Germany 47–57
see also sludge
waterproofing, sludge re-use 80, 81, 82, 84–85, 88
wattle and daub, Portugal 92
weathering
Bentheim and Obernkirchen sandstones 178–179
Pendelikon marble 293
Puglian calcarenite 184, 188
salt see salt weathering
wet-on-wet lamination
see alla prima (wet on wet) technique
wick effect
see capillarity
wood materials, Pays rémois 120, 121, 123
Wood quarry, Bentheim Sandstone 166, 170
workability 14
Zsolnay ceramics, effects of pollution 239, 240