ABAQUS non-linear finite-element code 213, 222
air entry value 51–52
air-drying, concrete barriers, gas permeability 64, 65, 66, 70–71, 72
aragonite mineralization 45
argillite, hydrogen migration, modelling 178, 184, 186
Äspö Hard Rock Laboratory, Lasgit 225
backfill
GDF 2, 243
Nirex Reference Vault Backfill (NRVB) cement 35–46
balance equations, two-phase flow 144–145
energy 145
mass 144–145
momentum 145
Barcelona Basic Model 214
material properties 215, 216
swelling property 215, 217–218
barriers
concrete 59–73
crystalline rock 95–105
engineered 2, 19
gas migration 3, 19–20
Japan
finite element model 218, 219
gas pressure and flow path 219–221
material properties 214–218
mechanical stability 221–223
numerical modelling 214–219
Lasgit 19, 225–227
geological 2
salt 107–121
bentonite buffer 2, 19, 20
FEBEX 47–56, 194
hydrogen migration, geochemical modelling 189–200
Japan, low-permeability layer 213–218
consolidation properties 214–217
gas pressure and migration 219–221
mean effective stress 220–221, 223
mechanical properties 214, 215
mechanical response 220, 221–222, 223
swelling property 215, 217–218
Kunigel-GX 214, 216
Barcelona Basic Model 214, 217–218
Lasgit 19, 225–227
multiphase flow simulation 125, 126
MX 80 type 10, 192–200
thermal gradient 47
Volclay KWK, Boom Clay experiments 10, 14
bentonite-sandblock assemblies
dry state shear strength testing 23–25
gas permeability 21, 25, 26, 30
hydraulic properties 28
hydromechanical properties 20–32
saturated state
gas-injection testing 27, 29–30, 32
healing 30–32
saturation 25–27, 28
shear testing 21–22, 30–32
strength testing 21
Bernberg salt mine, borehole injection tests 111
112–116
bitumen, L-ILW disposal 2
Boom Clay Formation 9–16
composition 10
favourable properties 9
gas breakthrough experiments 10–16
bentonite 10, 14
displaced pore water 12, 13, 15
fractures 10, 13, 14–15
permeability cells 10–11, 14, 15
buffer medium 243
bentonite 2, 19, 20
blocks 19, 20
see also bentonite buffer
calcite evolution 195, 198, 199
calcite mineralization 35, 42, 44, 45
Callovo-Oxfordian Clay
gas migration testing 15, 76–93
deviatoric loading 79–80
fracture sealing 82–83
gas breakthrough 83–86
permeability 88, 89, 90, 91, 92
pressure 87–88, 89, 91
shut-in pressure 92
impact of gas pressure rise 86–87
isostatic compression 77, 78
water-saturated and resealed fractures 81–93
canisters
copper, Lasgit 225
corrosion 2, 3, 47, 192
HLW disposal 2, 243
upscaled numerical models 125, 127, 132
see also super-canisters
capillary pressure
hydrogen migration 169, 171, 186
mathematical upsampling 131–132, 134
carbon dioxide
dissolved, hydraulic testing 40
formation in repository 2, 9, 35
NRVB cement 42–43
phase diagram 36
supercritical 36, 39, 41–42
Werra Salt Formation 118
carbonation
effect on buffering cement 35, 72
NRVB cement 42–46
reaction front propagation mechanism 43
implications for radioactive waste repository 45
PRECIP modelling 39, 44–45

Index

Page numbers in italic denote figures. Page numbers in bold denote tables.
carnallitite, rock burst 118–120
cement, L-ILW disposal 2, 35
Japan
gas pressure and migration 219–221
low-diffusion layer 213, 214
mechanical response and stability 222, 223
Nirex Reference Vault Backfill (NRVB) 35–46
clay see Boom Clay Formation
claystone
effects of humidity on gas flow 80
gas migration 75–93
chloride 76, 78–81
hydrogen migration 167–178
sealing 78, 80–83
Cluster Repository Project (CROP) 19
CODE_BRIGHT, numerical modelling 143, 213, 219, 222
COMPASS-PHREEQC model 190–191
compressibility factor, FEBEX bentonite 49, 50
compression
deviatoric 23, 109
EDZ fractures, gas flow 79–80
isostatic, EDZ fractures, gas flow 76, 77, 78–79
cement barriers
gas permeability 60–63, 64–66, 67, 70
and air-drying 64, 65, 66, 70–71, 72
Klinkenberg effect 67–70, 72–73
non-steady-state method 60, 62, 64, 72
pressure differential 65–66, 67, 68, 72
and saturation 64, 65, 66, 70–71, 72
steady-state method 62–63, 64–66, 72
hydraulic conductivity 63, 66–67, 68
intrinsic permeability 70–72
L-ILW disposal 59–73
relative permeability 71, 72
water permeability 63–64, 66–67, 68, 71–72
consolidation properties, LPL bentonite 214–217
constant flow injection test 95, 97, 98, 99, 100, 104
constant head injection test 95, 97, 98, 99, 102, 104
constitutive relationships, fluid flow modelling,
Opalinus Clay EDZ 146–148
corrosion
anaerobic, waste containers 2, 3, 75, 123, 167, 192
Boom Clay 9
and carbonation 35
Cortijo de Archidona deposit, FEBEX bentonite 47
Couplex-Gaz simulation, two-phase flow 123
creep, salt formations 108
crystalline rock
gas permeability 96–105
gas-injection tests 96–105
as host for radioactive waste disposal 95
pathway dilation 96–97
Dalton’s law 129, 148, 155, 156
Darcy-Muskat flow 128, 168–169
Darcy’s law 76, 100, 146, 152–153, 154, 168, 191
defformation, brittle to ductile 23, 24
diffusion
Fick-type 3, 169
gas 3, 9, 169, 244–245
iodide 11, 12, 13
dilatancy 23
salt formations 107, 108, 109–110
double-packer gas injection tests 96, 98–99,
102–103, 113
DuMuX simulator 125, 133
El Cabril disposal facility 59
effect of humidity 80
engineered barrier systems see barriers, engineered
environment, Safety Case 1–2, 241–242
equilibrium restrictions 145–146
mechanical 145
phase-change 145–146
thermal 145
European Commission
Cluster Repository Project (CROP) 19
FORGE project see Fate Of Repository GasEs (FORGE) project
event candidate investigation, Lasgit toolkit 229, 230,
231–238
evacuation damage zone 2
gas migration 3, 9, 75
crystalline rock 95–105
effect of humidity 80
gas-injection tests 96–105
hydrogen FORGE cell-scale benchmark 178–186
Josef Underground Laboratory 103–105
multiphase flow simulation 125–127, 132–133
water pressure tests 103–104
water-saturated and resealed 81–93
Opalinus Clay, fluid flow modelling 143–159
salt formations 107
exploratory data analysis, Lasgit 227–229
toolkit 228, 229–231
Fate Of Repository GasEs (FORGE) project 1–4, 47,
242, 249–256
cell-scale benchmark simulation
hydrogen migration 175, 178–186
base case results 181
boundary conditions 179–180
deviation from original benchmark 180–181
drift boundary conditions 181, 183
gas entry pressure 183–184
initial conditions 180
outer boundary position 181
space and time discretization 178–179
exclusions 252–253
features, events and processes (FEPs) 1–2
module-scale benchmark simulation 123–139
mathematical model 127–129
numerical results 133–139
upscale 129–133
two-phase flow/pathway dilation models 255
work packages 1, 3, 249–252
1 gas issues in Safety Case 3, 250–251, 255
2 gas generation 3, 251, 253
3 engineered barriers/seals 3, 59, 251, 253–254
4 disturbed host-rock 3, 251–252, 254
5 undisturbed host-rock 3, 252, 254–255
FEBEX bentonite 47–56, 194
air entry value 51–52
Cortijo de Archidona deposit 47
INDEX

261

gas breakthrough pressure 48–56
gas permeability 50, 52–56
pathway dilation 56
physico-chemical properties 48
saturation 49, 50, 51, 56
testing 19
two-phase flow 54, 56
Fick-type diffusion 3, 169
Fick’s law 128, 147, 154, 168, 191
flow properties, NRVB
carbon dioxide 39, 40–41
inert gas 39, 40
reaction zone 42
supercritical carbon dioxide 39, 41–42
testing 36–42
fluid flow
effect of NRVB carbonation 35–46
flow properties testing 36–38
modelling
Opalinus Clay EDZ 143–159
1D modelling 150–159
balance equations 144–145
constitutive relationships 146–148
equilibrium restrictions 145–146
field equations 148–149
saturated-ununsaturated transition 149–150
FORGE project see Fate Of Repository GasEs
(FORGE) project
Fourier transform, discrete, Lasgit toolkit
229, 231
fracture closure, compact claystone 78, 80–83
fractures
Boom Clay gas breakthrough experiments 10, 13, 14–15
EDZ
effect of humidity on gas flow 80
non-wetted
gas flow 75–80
deviatoric compression 79–80
isostatic compression 76, 77, 78–79
water-saturated and resealed, gas flow 81–93
fracturing
gas-induced 245–246
pneumatic
salt formations 108, 110, 112, 116, 120
see also gas-frac scenario
free gas phase formation 9
frequency domain analysis, Lasgit toolkit 229, 231
gas
generation and migration 2–4, 245
see also gas migration
gas breakthrough 9, 47
Boom Clay 10–16
Callovo-Oxfordian Clay 83–86
FEBEX bentonite 48–56
air entry value 51–52
Opalinus Clay 83–86
parameters
permeability 88, 89, 90, 91, 92
pressure 87–88, 89, 91
shut-in pressure 92, 108
salt formations 110, 113, 114, 118, 120
gas diffusion 3, 9, 169, 244–245
gas flow 245
EDZ fractures 247
effect of humidity 80
impact of gas-pressure rise 86–87
non-wetted 75–80
deviatoric compression 79–80
isostatic compression 76, 77, 78–79
water-saturated and resealed 81–93
second order events, Lasgit EDA 231–238
see also two-phase flow
gas migration 245, 247, 254
bentonite buffer, reactive transport model 190–191
EBS, Japan 219–221
EDZ 75–93
crystalline rock 95–105
tests 99
see also gas-injection tests; hydrogen
gas permeability
bentonite-sandblock assemblies 21, 25, 26, 30
claystone 76, 78–81
concrete barriers 60–63, 64–66, 67, 69–72
non-steady-state method 60, 62, 64, 72
steady-state method 62–63, 64–66, 72
crystalline rock 96–105
FEBEX bentonite 50, 52–56
gas reactivity 247
gas slippage see Klinkenberg effect
gas uptake 247
gas-frac scenario 108, 110, 120
Merkers natural analogue 118–120
gas-injection tests
bentonite-sandblock assemblies 25, 27, 29–30
concrete barriers 59–73
constant flow injection test 95, 97, 98, 99, 100, 104
constant head injection test 95, 97, 98, 99,
102, 104
crystalline rock 95–105
double-packer tests 96, 98–99, 102–103, 113
migration tests 99
single-packer tests 96, 97–98, 100–102
water permeability 103–104
NRVB cement 37–38
Opalinus Clay 143, 203–212
pressure drop test 95, 97, 99
salt formations
large-scale borehole 116–118
medium-scale borehole 112–116
small-scale laboratory 110–112
subsurface disposal facility, Japan 214–223, 216
see also Large Scale Gas Injection Test (Lasgit)
gas-pressure rise
build-up 3, 9, 15, 47
compact claystone 86–87
EBS, Japan 219–221
pneumatic fracturing 108, 110, 213
salt formations 110–118
large-scale borehole injection tests 116–118
medium-scale borehole injection tests 112–116
small-scale laboratory injection tests 110–112
GASNET project 3, 249
geological disposal facility (GDF) 47
design strategies 123, 248, 255–256
NRVB 35–46
geological disposal facility (GDF) (Continued)
Safety Case 1–2, 241–242, 248–249
FORGE project 1–4, 47, 242, 249–256
see also Fate Of Repository GasEs (FORGE)
gas issues 243–249
free gas-phase formation 245
generation 244
management and treatment 248–249
microbial activity 248
migration 244–245, 247, 254
pathway dilution and fracturing 245–246
reactivity 247
redox reactions 247–248
two-phase flow 245
uptake 247
see also multiple barrier concept; Fate Of Repository GasEs (FORGE) project
GETFLOWS flow analysis code 213, 214, 216
glass, HLW disposal 2, 243
granodiorite, gas-injection tests 95–105
Grönaer shaft anticline 113
groundwater, aqueous contamination 2, 3
gypsum evolution 195, 198, 199
HADES URL 10
Boom Clay gas breakthrough experiments 10–16
Praclay Seal 10
halokinesis 108
healing 30–32
salt formations 107, 119, 120
HG-A test 143–159, 205–207, 209–210, 211
HG-B test 204, 205, 209, 210, 211
Hooke’s law 148, 160–161, 162
host rock 2, 3
crystalline 95
interface with sealing material 19–20
hydraulic conductivity, concrete barriers 63, 66–67, 68
hydraulic tests
NRVB cement 37, 38, 39–40
dissolved carbon dioxide 40
hydrogen
formation in repository 2, 9, 123, 167
multiphase flow simulation 123, 127
mathematical model 127–129
upscaling 129–133
microbial activity 248
migration in argillite
modelling 167–178
capillary pressure 169, 171, 186
chemical reaction 169
consistent thermodynamic model 170–171, 172
Darcy-Muskat flow 168–169
Fick-type diffusion 169
FORGE cell-scale benchmark 175, 178–186
hydrogen source 169–170
MoMaS test cases 172–178
physical model 168–170
primary variables 171–172
temperature 169
migration in bentonite
geochemical modelling 189–200
gas evolution 196–197
initial and boundary conditions 192–193, 194
material parameters 193–194
mineral evolution 195, 198, 199
pH and redox 195, 197–198, 199
reactions 195
simulation results 195–200
simulation scenarios 191–195
redox reactions 247
hysteresis, permeability-saturation curve 169
ideal gas law 168
interfaces
bentonite-sandblock assemblies
dry state shear strength testing 23–25
oedometer pressure cell 22
saturated, healing 30–32
host rock-sealing material, gas-pathways 19–20
iodide tracer, Boom clay 10, 11–13, 14–15
Japan, subsurface radioactive waste disposal,
hydromechanical modelling 213–223
Josef Underground Laboratory
crystalline rock, gas-injection tests 95–105
EDZ permeability 103–105
KBS-3 concept HLW repository 225, 226
Kelvin’s law 129
Klinkenberg effect, gas permeability, concrete barriers 67–70, 72–73
Kozeny’s model 214
Krichevsky-Kasarnovsky equation 170, 185
Kunigel-GX bentonite 214, 216, 217–218
Large Scale Gas Injection Test (Lasgit) 19, 225–227
exploratory data analysis 227–229
event candidate investigation 231–238
toolkit 228, 229–231
lead-alloy, L-ILW disposal 2
Leine salt 113
mass balance equations 144–145
mechanical equilibrium 145
Merkers natural gas-frac analogue 118–120
Merkers salt mine, borehole injection test 116–118
methane
formation in repository 2, 9
migration 248
microbial activity 2, 9, 248
Mokrsko granodiorite, gas-injection tests 95–105
MoMaS test cases, hydrogen migration in clays 172–178
momentum, balance equations 145
Mont Terri URL, Opalinus Clay
gas-injection tests 204–207
HG-A test 143–159, 204, 205–207, 209–210, 211
HG-B test 204, 205, 209, 210, 211
numerical modelling 207–212
multiple barrier concept 2, 19, 123, 242–243
MX 80 bentonite 10, 192–200
Nirex Reference Vault Backfill (NRVB) cement 35–46
carbonation 42–46
implications for radioactive waste repository 45
reaction front propagation mechanism 43, 45
flow properties testing 36–42
 gas injection testing 37–38
 hydraulic testing 37, 38, 39–40
 resaturation 37
 gas permeability 37, 38, 39
 hydraulic permeability 38, 39
 mineralogy 38–39, 42–43
 preparation 36
nitrogen, in flow experiments 40, 49, 50, 60, 62–63, 81, 83
oedometer cell 22
Opalinus Clay
EDZ
 fluid flow modelling 143–159
 1D modelling 150–159
 boundary conditions 154–155, 156
 field equations 153
 geometry and coordinate system 150–151
 hydraulic axisymmetry 151
 initial conditions 153–154
 mechanical axisymmetry 151
 results 156–159
 simplifying assumptions 151–153, 158–159
 test input protocol 155–156
 balance equations 144–145
 constitutive relationships
 gas phase 148
 liquid phase 147–148
 porous medium 146–147
 solid phase 147
 solid-phase skeleton 146, 148, 149, 158
 equilibrium restrictions 145–146
 field equations 148–149
 saturated-unsaturated transition 149–150
gas migration testing 81–93
 fracture sealing 82–83
 gas breakthrough 83–86
 permeability 88, 89, 90, 91, 92
 pressure 87–88, 89, 91
 shut-in pressure 92
 injection tests 203–212
 HG-A 143–159, 205–207, 209–210, 211
 HG-B 204, 205, 209, 210, 211
 laboratory 205, 208–209
 numerical modelling 204, 207–212
 water-saturated and resealed fractures 81–93
pathway dilation 245–246
 crystalline rocks 96–97
 FEBEX bentonite 56
permeability
 gas
 claystone 76, 78–81
 concrete barriers 60–63, 64–66, 68, 69–72
 crystalline rock 96–105
 FEBEX bentonite 50, 52–56
 MX 80 bentonite 194
 intrinsic, concrete barriers 70–72
 mathematical upsampling 131–132, 134
 relative, concrete barriers 71, 72
 salt formations 107, 111, 112, 115–116, 118, 120
 water, concrete barriers 63–64, 66–67, 68
 permeameter
 Boom Clay gas breakthrough experiments 10–11, 14, 15
 constant head 63
 pH 197–198, 199–200
 and carbonation 35
 phase-change equilibrium 145–146
 pneumatic fracturing 108, 110, 112, 116, 120
 Poisson’s ratio 160, 162, 163
 LPL bentonite 214, 215, 217
 polymer resins, L-ILW disposal 2
 poroelasticity, isotropic linear, in plane strain and axisymmetry 162–163
 porosity, mathematical upsampling 131
 Portlandite 44, 45
 potash, Werra Salt Formation 118
 Pray Seal 10
 PRECIP modelling 39, 44–45
 pressure drop test 95, 97, 99
radioactive waste disposal
 geological disposal facility 1–4, 241–242
 FORGE project 1–4, 47, 241–256
 high-level 2, 243
 low- and intermediate-level 2, 59, 204, 243
 radiolysis, waste containers 9
 radionuclides
 mobilization 2, 9
 and carbonation 35
 Raoult-Kelvin law 168, 170, 171, 184–186
 reaction front propagation mechanism 43
 reactive transport model 190–191
 real gas law 49–50
 redox reactions 195, 197–198, 199, 247
repository systems
 gas generation and migration 2–4
 multiphase flow simulation 125–139
 bentonite 125, 126
 EDZ 125–127
 mathematical model 127–129
 modules 125, 126
 numerical results 133–139
 upsampling 129–133
resaturation
 bentonite buffer 192
 NRVB cement 37, 39
 resealing, claystone 75, 81–93
 rock burst, Werra Salt Formation 118–120
 rock salt see salt formations
Safety Case, GDF 1–2, 241–242, 248–249
 gas issues 243–249
 see also geological disposal facility,
 Safety Case
salt formations 107–121
 dilatancy 107, 108, 109–110
 gas-frac scenario 108, 110, 120
 impact of gas pressure 110–118
 large-scale borehole injection tests 116–118
 medium-scale borehole injection tests 112–116
 small-scale laboratory injection tests 110–112
 mass transport 109
 permeability 107, 111, 112, 115–116, 118, 120
 pneumatic fracturing 108, 110, 112, 116, 120
salt formations (Continued)
tightness 108–110, 118
water content 109
saturation
concrete barriers, gas permeability 64, 65, 66, 70–71, 72
FEBEX bentonite 49, 50, 51, 56
mathematical upscaling 131–132, 134
sealing
fractures 75
Boom Clay Formation 10, 13–14
claystone 78, 80–83
see also resealing, claystone
sealing materials 19
shear strength, LPL bentonite 215
shut-in pressure 92, 108
single-packer gas injection tests 96, 97–98, 100–102
singular spectrum analysis, Lasgit toolkit 229
smoothing/weighted moving average functions, Lasgit toolbox 229, 230
Sondershausen dam project 20
sorption 9, 247
spent nuclear fuel, disposal 2, 243
spike detection, Lasgit toolkit 229, 230
Staßfurt rock salt 111, 112
sulphate reduction 199
super-canisters 19
swelling properties
FEBEX bentonite 48
LPL bentonite 214, 215, 217–218
Terzaghi’s effective stress principle 162
thermal equilibrium 145
thermodynamic equilibrium, hydrogen migration
modelling 170–171, 172
tightness, salt formations 108–110, 118
tobermorite 44, 45
tortuosity, mathematical upscaling 132
transducer, LVDT 76, 77, 86
trend detection, Lasgit toolkit 229, 230–231
two-phase flow 245
FEBEX bentonite 54, 56
simulation 123–124
Couplex-Gaz 123
hydrogen migration in argillite 167–178
mathematical model 127–129
upscaleing 124, 129–133
numerical results 133–139
UM1 135–139
UM2 137–139
UCODE_2005 214, 216
upscaleing, two-phase flow simulation 124, 129–133
van Genuchten-Mualem model 127, 128, 172
vitrification, HLW disposal 2, 243
Volclay KWK bentonite, Boom Clay experiments 10
Waste Isolation Pilot Plant (WIPP) 109, 241
water permeability
crystalline rock 103–104
Werra Salt Formation 111, 116
carbon dioxide accumulation 118
rock burst 118–120
Young’s modulus 160, 162, 163
LPL bentonite 214, 215, 216, 217