Index

Page numbers in italic type refer to pages on which illustrations or tables appear.

accretion
 at divergent plate boundaries 45-6
 incipient, of oceanic crust 325
lower crustal igneous material 4, 5, 8
N-S boundary zone, Iceland 151-2
accretion model, oceanic crust formation 95
acoustic basement 137
Jan Mayen Ridge 87
acoustic basement reflectors 49, 51, 90
comprising extrusive basalts 50
acoustic impedance zone 65
actinolite 125
Aegir Ridge 157
 fan-shaped anomaly pattern 158
fan-shaped spreading pattern 85
aegirine 376, 409, 411, 414, 417
 indicating peralkline parental magma 416
titaniferous 411, 412, 416
aegirine-augite 78
aegirine granite 442
aenigmatite 411
aeromagnetic anomalies 316
 Iceland 147-9
Africa/Europe convergence 30
African plate 29
agate 78
agglomerate 365, 366, 373, 374, 436
silicic 376
aggregates, glomerophyric 78, 301
agpaites 447
alteration 78, 151, 245, 257, 295, 299, 300, 305, 367
chloritic 205
 deuteric 217, 219
 of glass 275-6
hydrothermal 80, 186, 339, 365, 440
hydrous 256, 258
incipient, volcaniclastic sand 409
interaction with seawater 125, 301
metamorphic 186
to smectitic clay 408
tuff beds 76-7, 78
alteration products, Upper Series lavas, Voring Plateau 70
Amdrups Pynt (Nugalik), E Greenland 210
amphibole 205, 207, 210, 257
brown 256
amphibolite facies 190
amphibolites 191
analcime 278, 296, 299
analcite 70-7
anatexic melts 306
andalusite 256
andesine 124
andesite 448
 basaltic 79, 80, 186, 339, 438
peraluminous 65
tholeiitic 163, 445
Angmagssalik-Scoresby Sund, igneous activity 436
ankaramite 163, 203, 438
tholeiitic 166
anorthite 257
anorthoclase 412
Anton Dohrn seamount 429
Antrim lava succession 343-4
Antrim Plateau
 flood basalts 217
 persistent volcanism 445
tholeiitic magmatism 446
apatite 441
 acicular 197
apatite saturation 170
Apectodinium homomorphum 266
Apectodinium hyperacistum informal zone 265, 399
\(^{39}\)Ar-\(^{39}\)Ar step heating dating 337, 339, 344, 357, 446
\(^{39}\)Ar initialization 203
Ardnamurchan
 K-Ar dating 342
 silicic pyroclastic rocks 371-2
 Tertiary igneous rocks 341-2
Ardnamurchan igneous centre/central intrusive
 (volcanic) complex 365, 386, 387, 444
Ardnamurchan-Mull, persistent volcanism 445
Arreosphaeridium diktyoplokus 400
arfvedsonite 207, 376, 409
garnillication 259
argon
 closure of rocks to 340-1
 extraneous 204, 205, 306
 a complicating factor 203
 contamination with 203
 problems with 211
 inherited 343
 radiogenic 218, 258
argon diffusion 218
argon excess 305
argon migration 255
argon recoil problems 255, 258, 260
argon release 305
Arran

455
Index

asthenospheric flow 19, 20
asthenospheric upwelling 45, 330
Atlantic evolution, age constraints on 201–12
Atlantic plate 8
augite 124, 128, 163, 165, 197, 257
poikilitic 316
autobrecciation 374

Baffin Bay, igneous activity 431–4
Baffin Bay spreading centre 434
Balder Formation(s) 253, 254, 255, 260, 261, 266–7, 280, 400, 407, 408
ash marker horizon 325
ash marker seismic reflector 412
deposition of 331
pyroclastic activity 265
tuffs 77, 78
Barents Sea margin 50, 423
Barents Sea margin (western) early Tertiary volcanism 135–45
geology 135–7
rifted margin, evolution of 144–5
Tertiary sedimentation and deformation, SW Barents Sea and Svalbard 141–2, 144
volcanism at the Bjønøya marginal high 137, 141, 143
Barents Sea Platform 421
Barents Shelf
two major drainage systems 423–5
western, Tertiary tectonics and sedimentation 421–5
Barra Volcanic Ridge System 325
basalt 54, 119, 130, 132, 186, 257, 293, 315, 316, 342, 368, 438, 442
alkali 197, 233, 295, 445, 447
alkali olivine 432, 446
altered 163, 298
Antrim 361
aphyric 432
Baffin Island, dating of 433
basanitic 435
depleted 125, 127
dipping reflectors 5
eyearly, fissure-fed 442
eyearly Palaeogene 130
eyearly Tertiary 123, 124, 225, 271
E Greenland 111, 203–4, 266
extrusion of 211
effect of alteration 148
extrusive 7, 50
Faeroe Islands, chemical groups 230, 233
Faeroe Rise 233
feldspar-phyric 374
flow basalts 51
glomerophyric 124
high-Ti 232
low in SiO2 246
low-Ti 232
mid-Atlantic ridge 246, 301
Mikis-type 170
olivine 339, 343, 344
altered 374

Ashfall see ash
assimilation-fractionation model 362
asthenosphere
advection of heat by upward migration of partial melt 11
high pressure of, N Atlantic 20
hot 3, 8, 9–10, 10–11, 16–17, 44, 45, 111, 130
lateral density variations in 18–19
and partial melting 8–10
reduced temperatures 11
rising 120

Arran (cont.)
Central Ring Complex 373
central volcanic complex 444
igneous centre 365
silicic pyroclasticrocks 373
Arran and Ailsa Craig 343, 346
Arran dyke swarm 385
ash bands 322
water-lain 312
ash clouds 78
ash deposits, British Tertiary Volcanic Province 365
ash horizons/layers 90, 141, 430, 447
airfall, graded 408–11
Danish 413
derived from Faeroe–Greenland Province 411–12
argillized 397, 403, 409
basaltic 413
bentonitic 409, 414
Danmark 395, 397–403
Limfjord area 401–2
negative series 397
positive series 397, 412
down-wind fallout, British Tertiary Volcanic Province explosive eruptions 445
Fe–Ti tholeiite composition 409, 411
late Palaeocene-early Eocene 445
Lower Tertiary strata 445
North Sea 10, 446
airfall, graded 409–14
peralkaline composition 409
Thanet Beds, Lower Tertiary 376
Upper Palaeocene 325
volcanic 395
ash
basaltic 260
basic primary 253
peralkaline 409, 411
primary 255
pyroclastic 407
rhyolitic 411
subalkaline rhyolitic 447
tholeiitic 411
Fe–Ti-rich 447
vitruc 255
volcanic, W Shetland Islands 263
ash marker 141
Balder Formation 325
North Sea 260, 442
top Palaeocene 229, 234
ash marker sequence 254
ash sequence, correlation of Fur Formation, North Sea and NE Atlantic proposed 400
ashfall see ash
assimilation-fractionation model 362
asthenosphere
advection of heat by upward migration of partial melt 11
Index

olivine-microphyric 299
olivine-phyric 229, 230, 295
picrite 177
plagioclase-phyric 124, 229, 230, 277, 432
primitive 433
quartz basalt 435
quartz tholeiite, microphyric 435
silica-oversaturated 446
subaerial 295, 298–9
Tertiary, Wyville-Thomson Ridge and Hebrides Shelf 271–80
tholeiitic 51, 118, 161, 197, 233, 235, 343, 431–2, 445, 447
formation of cycles, Prinsen af Wales Bjer ge (PWB) 197–9
olivine-rich 432
within plate 297, 305
basalt genesis and formation of passive margin SW of Rockall 130–2
basalt lava terrains, Upper Tertiary, Iceland 152
basaltic differentiates, contaminated 355, 356, 357
basaltic melt, Rhum 391
basanites 436
baselap 102, 103, 112
dipping reflectors 100
basement
acoustic 137
reflectors 49, 50, 51, 90
acoustically opaque 100, 110
basaltic (Faeroe islands) 115
continental metamorphic 226
gneiss 181
opaque, oceanic 90
Precambrian 443
basement elevation 135
basement escarpments, Norwegian–Greenland Sea 43
basement rocks, Kangerdlugssuq area, analysed 190
basement trends, Porcupine Basin 331
basin formation and sedimentation 434
basin inversion 25
basin margin erosion 272
basin subsidence 118, 432, 435, 445
basins
fault-controlled 386
Mesozoic 25
pre-opening, Norwegian–Greenland Sea 51–2
rifted 330
sedimentary 111, 445
synclinal 445
syn-rift 321
Basistoppen sill 439
bathymetry, N Atlantic, anomalously shallow 7, 11
bauxite 373
Bay of Biscay, graded ash layers 412
beidellite 70
Belg deposits, Western Red Hills, Skye, pyroclastic breccia 368–9
Bill Bailey Bank 225, 229, 230, 233, 271
biostratigraphy and age, Danish Upper Palaeocene–Middle Eocene 395–7, 399–400
biotite 205, 207, 210, 211, 256, 257, 258
Biscay margin 5, 6–7, 10
bivalves 278
Bjørnøya Basin 135, 137, 141, 144, 145, 421
tertiary sediment distribution 141
Bjørnøya marginal high 135, 144
postvolcanic vertical movement 137
volcanism 137, 141, 143
Bjørnøya Trough 423–5
Bjørnøya–Sørkapp fault zone 144
black shale facies 306–7
Blackstones Bank 345
Blackstones Complex 429
Blind Rock Dyke, Donegal 344
block faulting 325
Blosseville Group 437
rapid accumulation 438
Blosseville Group basalts 203
Blosseville Kyst 181, 187, 436
basalts, K-Ar ages of and extrusion of 211
main intrusive centres 202
MORB-type mantle source 182
uplift of 21, 22
boreholes 85/58, 85/7 and 85/2B 271–80
Borgtinderne nephelite syenite intrusion 207, 210, 211
boundary fault system, W Greenland 433
breccia 368, 436
crush 374
explosion 365, 369
hyaloclastite 430
slope-foot 287
interbedded 370
picritic 433
pillow 432
pyroclastic 365, 367, 369, 370–1, 372, 374
unbedded 368
volcanic 435
breccia zone, basal 80
Brendan Igneous Centre 312, 319, 322, 330, 331
emplacement of 322
late Cretaceous igneous activity 325
Britain, igneous activity 443–6
British Tertiary Igneous Province 25, 80, 217, 265–6, 276, 338, 361
dating problems 337
magmatic affinities 376
regional setting 376–7
relationship to opening of Atlantic 27
time and duration of activity 337–46
Ardnamurchan 341–2
Arran and Ailsa Craig 343
Ireland 343–4
Lundy 344–5
Mull 339–41
St. Kilda 345
Skye 342
Small Isles, the 342–3
role of palaeomagnetism 339
British Tertiary Volcanic Province 76, 268, 305, 414–16, 417, 430, 443, 444
eaegirine 411
difficulties in accurate dating of stages of volcanism 446
dyke swarm orientation, control of 384
Index

British Tertiary Volcanic Province (cont.)
regional stress field controlling magmatism 388
silicic pyroclastic rocks of 365–77
stress and dyke emplacement 381
brittle deformation 430
brookite 411
Bryozoan Sand 265
buchites 448
Bulimina midwayensis 263
bytownite 124, 263, 277

calcite 70, 78, 163, 165, 228
microcrystalline 316
caldera collapse 372, 436
caldera formation 370
surface 375
caldera subsidence 431
calderas 151, 376, 377
basaltic 372
silicic 372
Camasunary-Skerryvore Fault 386, 388, 444, 445
Canna lavas 342
alkaline basalt 445
Cape Verde hot-spot 8
Cape Verde Rise, mantle plume model 8, 9
carbonates 80, 256, 257, 398
carbonatite 441, 447
Carlingford central intrusive complex 344, 349, 361, 374, 386, 387, 444
age of 357–8
Carlingford granophyre 344
cataclastic structures 375
Causeway Basalts (Middle Basalts), Antrim 343
celadonite 70, 125
Celtic Sea Basin 324
Central graben 388
central intrusive complexes 337, 361, 415, 431, 432, 436, 440
Ardnamurchan 341–2
development of 439
migration of centres of activity 386, 387
Mull 339–41
NE Ireland 344
Rb-Sr isotopic determinations and timing 349–58
Rhum 342
Skye 342
and stress fields 386
central volcanic complexes 444
chabazite 228
chalcedony 78
chalk 315
Charlie Gibbs fracture zone 158, 222, 325, 331
chert 316
chlorite 125, 163, 165, 256, 257, 299, 300, 305, 367
chloritization 203, 259
chrome-endiopside 170, 192
chrome spinel fractionation 169
chromite 300
chromite crystals 169
Clare lineament 331
clay minerals 397
claystone 255, 263–65
Index

oceanic see oceanic crust
pre-Tertiary, E Greenland 189-90
thickened beneath rifted margins 5
transitional 54
crustal accretion 152
subaerial, Pálmasón model 95, 103-5, 111
crustal anatexis 440
crustal assimilation 80, 171, 376
crustal attenuation 57, 432
crustal blocks, rotated 439
crustal complexes
Iceland
decrease in number with age 152
distribution dependent on crustal age and
tectonic setting 153
representing palaeo-rift zones 152-3
crustal construction process, Iceland, models for 152
crustal contamination 128, 130, 188, 190, 191, 301,
303, 305, 354, 356, 362, 431, 440, 443
by siliceous sediments 172
British Tertiary Igneous Province 191
selective (\(^{87}\)Sr) 361, 362
crustal extension 53, 330
and dipping reflectors 118
Jan Mayen Ridge 87
late Mesozoic, Norway/Greenland 144
More and Voring Basins 52
crustal fracturing, and water influx 43
crustal fusion, aluminous sedimentary rocks 448
crustal generation, Icelandic type 51, 53-4
crustal rifting 147
and associated ocean floor development, contrasted
styles of volcanism 200
crustal separation 124
crustal shortening 144, 422
crustal stress patterns, fundamental change in,
Faeroe–Greenland Volcanic Province 417
crustal stretching 118-19, 130, 131, 136, 144
crustal structure, deep, of Norwegian and Greenland
margins 42-3
crustal tension, relief of, NE Atlantic rift zone 417
crustal thickness 40, 42, 105, 108
increase in, Norwegian and Greenland margins 43
crustal thinning 5, 45, 131, 330, 439
and location of intrusive centres 365
crustal velocities, lower crust 65
crustal weakness, and preferential channelling of
magma 431
crystal fractionation 71, 431, 440, 447
crystallization time 339
Cuillins, central intrusive complex 342, 343
cumulates
layered 431, 439
ultramafic 441
dacite 293, 300-1, 448
peraluminous 62, 65, 80, 442
Rockall Trough
cordierite-hypersthene 305
cordierite-phryic 300
generation of 306
geochemistry of 302, 306-7
Pb-isotope characteristics 303

Voring Plateau 79, 80
Danea mutabilis zone 265
Darwin igneous centre 293, 294
Davis Strait, tension 431
debris flows 322
Deccan Traps 191
décollement 422
deep mantle temperatures, raising of 43-4
Deep Sea Drilling Project (DSDP)
Leg 48 123-32
Leg 81 57-66, 123-32
Site 550 400
Deflandrea oebisfeldensis acme interval 399
deforestation 158
brittle 430
compressional 29
intraplate 29
and mobilization of deep salt layers 421
oceanic transform faults 330
plastic 430
surface 19
thrust-ramp 422
transpressional 144
translational 144
degassing, of magma 375-6
delta fans 287
demagnetization
alternating field 216
thermal 216
Denmark, Palaeogene volcanism 395-403
age 399-400
evidence for 397-9
source of the ash layers 400-2
Denmark Strait, magnetic anomaly dating difficult
96, 99
density instabilities 45
depocentres
Faeroe Islands 228, 235
Tertiary, Western Barents Sea Basin 423
depositional environment, Tertiary sediments,
Wyville-Thomson Ridge and Hebrides Shelf
278-9
detachment planes 90
deuteric alteration 217, 219
devitrification 259
devolatization 29
diachronism, Sylne Fissures 319
diagenesis 110
diagenetic cement, Sylne Fissures 319
diapiric doming 131
diapiric emplacement, Brendan Igneous Centre 322
diapirism 332, 440
mantle 130
diapirs, granite 431
diatoms 263
differentiation 366
acid magma, Mourne Mountains 354
diffraction hyperbolae 57, 63, 66
dilation 386
dilation axes 382-4
Dingle Dyke 344
Dingle Peninsula
Index

Dingle Peninsula (cont.)

dykes 444
	dolerite, dating of 446
dinoflagellate zones, and Danish ash layers 396, 399–400

dinoflagellates 265, 278

Danish Upper Palaeocene–Middle Eocene sediments 395–7
diorite 211, 447
dip reversal 103
dipping reflector styles, NE Atlantic Ocean 57–66

geometry of the reflectors 58–64

nature of the reflectors 65–6

dipping reflector wedges 57, 90, 91, 100–1, 108, 112

composition of, Varing Plateau marginal high 51

beneath marginal highs, Norwegian–Greenland Sea 49–50

Bjørnøya marginal high 137, 141

controls on distribution and deposition 63
determining age of 96

E Greenland 95–112

comparison with Iceland 103–5

distribution and geometry 96–101

initiation of seafloor spreading above sea-level 111

origin 101–3

velocity structure 105–10

Faeroe Islands

coinciding with gravity high 118

geometry of 58–64

divergent-arcuate (western Voring Plateau) 58–9, 61, 62, 65

divergent-planar (Møre Basin) 58, 60

flexured (western Rockall) 58, 62–4, 66

subparallel (southern E Greenland) 58, 62

Iceland–Greenland Ridge 98, 99, 100, 101

Jan Mayen Ridge 85, 87, 90, 92

age of 91

and lava flows 3

models for Voring Plateau sequence 52–4

N Atlantic, zone width 4

Norwegian–Greenland Sea margins 37–43

offlapping development 100

origin of 116–19

SW of Rockall Plateau 123–32

subaerial oceanic origin 102

underlain by igneous crust 43

disconformities 430

dissolution 391

dolerite 163, 165, 201, 245, 254, 312, 316, 361, 369, 376

analcime-olivine 320

oceanic 246

olivine 124, 245, 320

tholeiitic 320

pegmatitic 245

Slieve Gullion 361

domes

rift 330

structural, Faeroe Islands 229

Tardree 373

doming 431

across intrusive bodies, and dyke swarms 385–6

diapiric 131

of Jurassic strata 320–1

of late Kimmerian unconformity 320

Mull Volcano 372

of reflectors 244

top Chalk 319

Doon Hill, Connacht 312, 320

downfaulting 144

downwarping 386, 430

thickening of lava pile 431

Dracodinium simile zone 400

Dracodinium varielongitudum zone 400

drainage reversal 144

Drimehogaidh Sill, Connacht 344
dyke complexes

ophiolitic, sheeted 248

sheeted 431

dyke emplacement 381, 385, 386

major phase 386

passive 385

dyke intrusion 53

 Britain 29

dyke and sill emplacement 323–4

dyke swarm axes 386

distribution and orientation 381

dyke swarm orientation, controls on 384–5

dyke swarms 10, 25, 131, 132, 148, 162, 201, 361, 436

Arran 385

basaltic 435

coast-parallel 211, 439

intensity of 439

Kangerdlugssuaq coast 205, 439

coastal 436–7

continental margin 161

development of 430–1

with time 385

Donegal–Kingscourt, Thulean 330

interpretation of swarm and dilation axes 381–4

lamprophyre 432

linear 337, 381, 443

NW–SE trend 339, 381

lower crustal structure 384

Morvern 385

postflexure, E Greenland 205

Rhum 342

secondary 384, 388

control of orientation 385

representing component of dextral shear 386

sigmoidal 381, 383

Skye 383, 384

NW–SE trend 342

Small Isles 383, 384

subswards 386

Tertiary, NW Britain 383–4

dyke systems

Connacht 311, 319, 330, 331

alignment similar to Slyne Fissures 324

County Kerry 330, 331

intrusive activity 324

Dingle Dyke, N–S trend 344

Galway, Mayo and Connacht 320

Haig Fras Basin 325

olivine-dolerite 311
Western County Kerry 320
dykes 27, 65, 158, 201, 227
basalt 227, 343
basaltic 339
Angmagssalik area 119
basic, tholeiitic 161
cross-cutting relations with central complexes 385
dolerite 205
Donegal and Killala Bay, NW–SE trend 344
early Tertiary 444
high-Mg
Fladød 167
Kraemer Ø 167
lamprophyre 205, 207, 210, 211, 440
multiple, flow-banded 320
NW–SE to N–S orientation, tectonic and structural control 384, 443–4
porphyritic 165
postflexure 211
regional NW–SE extension as dominant control 383
ring-dykes 339, 357, 368, 374, 376, 387
as stress indicators 381
THOL-1 163–5, 170, 172–3, 176, 201, 205
THOL-2 165, 168, 173–4
parallels with Icelandic basalts 174
tholeiitic 75, 78, 80
TRANS-1 165, 168, 174
tuffisite 373, 375
dykes and sills, E Greenland, K-Ar analyses 206–7
earthquakes, deep-focus 15
E Greenland
coast marginal dyke swarms 439
early basalts 132
eruptive mechanisms 197–200
flexure zone 440
distanced from evolving spreading centre 440
Lower Tertiary lavas, palaeomagnetic study 215–22
palaeomagnetic poles 220, 221
peralkaline magmas 416
southern, subparallel reflectors 62
E Greenland continental margin, timing of magmatic activity 201–12
E Greenland Tertiary Igneous Province 201
isotope geochemistry of the Lower Laves 181–93
E Greenland Tertiary lavas compared with Skye lavas 191
E Greenland Tertiary Volcanic Province 197
Eastern Red Hills, Skye 342
dating of 446
granites 416
pyroclastic breccias 367
Eatonycysta ursulae 400
Edoras Bank 124
Edoras Basin 123, 124
Eidi Member 227, 228, 230
low-Ti olivine tholeiites 235–6
Eidis Series 227
Eigg 342, 345, 446
alkaline basalt lavas 445
Ekofisk Formation 407
enrichment, during alteration 80
epidote 163, 165, 367
epigranite 361
Erlend volcanic complex 229, 244, 253, 332, 443
Erlend Volcano
explosive climax 261
source of N Sea ash marker tuffs 260–1
erosion 141, 430
basin margin 272
subaerial 368
Erqu̱ Formation 432
erratics 229, 230
eruption point, migration with time 366
eruptions
along spreading axis 120–1
central vent 433
fissure 365, 386, 433
hydrovolcanic 414, 417
Plinian-type 78, 415–16
rhythmic 372
Surtseyan-type 414
eruptives, peraluminous 448
escarpments 442–3
basalt, origin of 116
as faults 116
lobate 119
NE Rockall Trough 283–4
small, lava fronts 116
estuarine sequence, volcaniclastic rocks 69
Eurasia Basin 49
Eurasian plate 29
Expanded Spread Profiling (ESP) 38
explosion breccia 365, 369
explosive vents 255
extension 52, 120, 383, 384, 421, 434
by normal faulting 104
continental, basalt eruption 118
contribution of feeder dykes 66
lithospheric/crustal thickness relation 51–2
NW–SE, synchronous with similar phase in North Sea 388
passive mechanism of 45
extension, volcanism and subsidence, relation between 119–21
extension systems, en echelon 119
extension zone, southern North Sea 29
extrusion 145
basaltic 63
of seaward-dipping reflectors 5
subaerial 53, 299
submarine 66
and tectonic setting of a volcanic rifted margin 144–5
extrusives 51
basaltic 433
early Eocene 53
eyearly Tertiary oceanic crust 112
rhyolitic 446
Faeroe Bank 225, 229, 230, 233, 271
Faeroe basalt plateau
continued in Rockall Trough 230
extending into Faeroe–Shetland Channel 229
Index

Faeroe basalt plateau (cont.)
structure, composition and age 225–36
accumulation rates 234–5
age 234
chemical composition 230–3
evolution 235–6
structure 227–30
submerged area, structure 229–30
Faeroe basin
Faeroe Block 225, 233, 437
subidence of 229
Faeroe–Greenland Igneous Province 265, 266
Faeroe–Greenland Volcanic Province 416
explosive eruptions 417
Faeroe–Iceland–Greenland mantle plume 413, 414
Faeroe Islands
basalts 217
chemical composition 230
continental fragment 441
igneous activity 441–2
mean palaeomagnetic pole 220, 221
pre-drift reconstruction(s) 438, 441
stratigraphy 226–7
structure 227–9
Tertiary volcanics 128
Faeroe Rise 225
chemical composition dredged basalts 230, 233
Faeroe Rise microcontinent 225
Faeroe–Shetland Basin 241
extension of North Sea graded ash layers 412
Faeroe–Shetland Channel 121, 225
northern, subsidence of 119
Faeroe–Shetland Escarpment 49, 115, 119, 437, 443
formation of 121
igneous activity 442–3
Faeroe–Shetland Escarpment transect 42
Faeroe–Shetland margin 52
Faeroe–Shetland sill complex
age of sills 241–5
chemistry of 245–7
emplacement of 248
geochemistry and origin of 241–51
K–Ar ages 241, 244
location 242
MORB-type rocks 246–7
relationship with Faeroes lavas 249, 251
structure 241
transgressive form of 243, 244, 249
Faeroes area, proposed time-scale of early Tertiary
volcanic events 267
Faeroese Shelf, parallel-bedded reflectors 116
Fairy Bridge basalt 299
fanglomerates 322, 323
Fastnet Basin 312, 325
Bathonian intrusives 320, 325
Jurassic faulting and intrusions 331
fault block rotation 158
fault blocks
Jan Mayen Ridge 87, 91
lifting of 445
fault reactivation 385, 386, 388, 446
fault-scarps 433
fault trends, Jan Mayen Ridge 87
faulting 434, 436
antithetic 439
in the central complexes 386
dextral strike-slip 388
extensional 331
Jan Mayen Ridge 87
late, NW Britain 386–8
listric 248
normal 388, 430, 439
and Rhine Graben 27
syndepositional antithetic 58
transform, Rockall Trough 330–1
faults 236, 431
inherited from the Caledonian structures 445
normal 319, 386
cutting lavas and central complexes 386–7
psuedotransform 158
reactivation of 25
reverse 87, 422
rift-marginal, rejuvenation of 434
sinistral transform 158
strike-slip 321, 387
thrust 422
transcurrent, imposing structural and igneous
modification 331
fayalite syenite 211
Fe–saponite 70, 78
Fe–Ti-oxides 70
feeder dykes, and dipping reflectors 66
feeder vents 5, 7
feldspar 197, 203, 316, 398, 411
interstitial 275
K-feldspar 299
microlitic 409
felsite 361, 371, 372, 375, 376
flow structure 369, 374
porphyritic 344, 374
Rhum 369, 370
Fennoscandia, postglacial recovery 20
ferroaugite 125
ferrobasalts 230
ferrohypersthenes, acicular 78
fiamme 369–70, 375, 376
partially-devitrified 372
fining-upward sequences 77, 78
Fionn Choire, Skye 366, 369, 373, 376
Firkanten Formation 141
fissure eruptions 102, 120, 229, 322, 386, 433
basaltic 365
fissure swarms 151
fissure venting system, axial 321
fissure volcanism 439, 446
fissure volcanoes 320, 430, 434, 437
fissures 152, 376
Fladø
dyke swarms 162, 165
dykes 167
flexure line, Svartenhuk 434
flexuring 158, 291, 436, 439
coastal 161, 441
S and SW of the Faeroe Block 229
flood basalts 217, 436, 437
Blæsøevej Kyot 193
continental, lithospheric mantle sources 192
tholeiitic 181
Globigerina gr triloculinoides 265
Globorotalia chapmani 265
glomerocrysts 124
gneiss, Archaean 189-90
Goban Spur 320, 322, 325
graded ash layers 412
Goban Spur Basin 312, 314, 322, 325
igneous activity 330
gonnardite 299
graben 309
graben/half-graben development 430
Davis Strait 431
graben/half-graben zone 445
graben system, Baffin Island–W Greenland 432
grain size, Danish ash layers 400–2
granite 211, 411, 416, 432, 447
aegirine 442
crustally contaminated basaltic differentiate 354
grading from peraluminous to peralkaline 447
Lundy 344–5
Mourne Mountains 344, 346, 350, 358, 387–8, 446
Rb–Sr data 350–5
Skye 342
granodiorite 342, 344, 350, 361, 432
aphyric pyroxene 357
porphyritic 357, 376
granulite facies 191
granulites
contamination with 190
Rockall Plateau 129, 130
gravity anomalies 447
and deep isostatic compensation 19
positive 135, 136
gravity highs 49, 118, 316, 319
Brendan Igneous Centre 319
N Atlantic, correlation with topographic swell 19
Great Glen Fault 444, 445
Greenland–Barents Sea boundary 421
Greenland continent margins 431
Greenland escarpment transect 40, 42
Greenland fracture zone 222
Greenland–Iceland–Faeroes Ridge

crustal thickness 7, 11
see also Iceland–Faeroes Ridge
Greenland–Iceland Ridge 21
Greenland plate, renewed internal stress 417–18
Greenland Sea
opening of 135, 136, 211
Greenland–Senja fracture zone 157
greenschist facies 110, 112, 163
groundwater interaction, E Greenland intrusions 205
groundwater/magma interaction 414

Haengefjeldet, THOL-I dyke swarms 162, 163–5, 167, 170
Haig Fras granite 325
Hampshire Basin, evolution of 29
Hatton Bank 49, 50, 124, 225
Hatton Bank continental margin 4, 5, 6–7
Hatton–Rockall Basin 225
hawaiite 203
Hebridean igneous activity, dating of 446

folds, asymmetric 422
foraminifera 278
Forlandsundet Graben 421
Forties sand 408
foyaite 211, 447
fractional crystallization 170, 306
fractionates, extreme 373–4
fractionation 197, 198, 357
crystal-liquid 376
high-pressure 376
low-pressure 127–8, 433
olivine 169, 199
in open magma chambers 166–7
and Sr addition 361
fractionation residues, late 448
fracture system, NW Scotland–Alps 29
Fur Formation 395, 397
age of 400
graded ash layers 412
silicoflagellate biostratigraphy 400
Fur (island)
ash layers 399
thickest and coarsest ash layers 402
gabbro 320, 344, 361, 368, 369, 394, 432, 436, 439, 447
Carlingford 361
feldspar-phyric 376
Killala (Ros Gabbro) 320, 322, 344
layered 344
Gallic subplate 29
Gardiner Complex 441
aegirine 416
ring-complex 440–1
Gardiner intrusion 205, 211
gas-streaming 368–9, 371
Gásefjord 215
gastropods 278
Gauss–Halvø, change in basalt character 435
Geikie Plateau Formation 438
g eo and gravity anomalies
cause and possible sources 18–19
circum-Pacific subduction zones 16
N Atlantic 17–20
combined effect of thermal and pressure anomalies 21–2
g eoid highs, over hot-spots 19
g eomagnetic polarity reversal 147, 153
rate of 148
see also reverse polarity
George Bligh Bank 225
g eothermal activity 151
g eothermal gradients 110, 112, 118
Giants’ Causeway 343, 446
Giesecke Bjerge, hyaloclastites 434
glass
devitrified 278
alteration stages 275–6
interstitial 296
peraluminous rhyolite 448
tholeiitic 263
volcanic 397, 408
g lauconitic marker 124

Index
463
Index

Hebridean lava succession 445
Hebridean region
 as source of North Sea volcaniclastics 409, 411
Hebridean volcanic sequences 415
Hebrides Shelf 271
 sediments 272-3
Helen's Reef, microgabbro 345
heulandite 70, 77, 301
Highland Boundary fault 444
Hold With Hope peninsula 434
 change in basalt character 435
Holmehus Formation 397, 399, 403
 mineral composition of clay 398
Hordaland Group 254
hornblende 165, 205
hornfels 254, 255, 256, 257, 260
Hornsund fault zone 135, 136, 144, 421
 oblique relationship to Senja fracture zone 422
Hornsund fracture zone 423
hot-spot migration 151
hot-spot model 8-11
hot-spot and plume hypotheses, implications of 20-1
hot-spots 3, 25
 Azores 19
 and continental break-up 20
 Iceland 19
 Iceland–Greenland Ridge 158
 Icelandic, causes and consequences of 15-22
 influencing spreading 44
 Kangerdlugssuaq 158
Hutton Glacier syenite I 210
hyaloclastites 124, 161, 287, 321, 325, 432, 434
hyalopilict texture 124
hybridization 391
hydrocarbons 307
hydrothermal activity 341, 376
hydrothermal alteration 80, 186, 339, 365, 440
 hydrous alteration 256, 258
 hydrovolcanic eruptions 414, 417
hypersthene 78, 256

Icealand
distribution of volcanic complexes 151-2
 east 77
 eastward displacement of rift zone 158
 magnetic observations 147-9
 NW submarine extension 152
 subaerial seafloor spreading 103-5
Icelandic mantle plume 8, 11
asthenospheric outflow 21
Iceland–Faeroes Ridge 8
 anomalously thick crust 21
Iceland–Greenland Ridge 103, 105
 dipping reflectors 98, 99, 100, 101
 formation of 158
 subaerial seafloor spreading 111
Icelandic plateau 85, 90
Icelandic hot-spot 44
 causes and consequences 15-22
Icelandic Shelf 95, 98
Icelandic transverse ridge 15, 22
 anomalously thick crust 16, 21, 22
Iddinsite 275-6, 295
Igdlitarajik 210
igneous activity
 Cretaceous 429-30
 extrusive 315
 Faeroe–Shetland sill complex 243
 Jurassic–Tertiary 327-9
 Lower Tertiary, Britain and Faeroe Islands 222
 Maastrichtian 119
 Mesozoic and Tertiary, Porcupine Seabight Basin
 analysis of 320-4
 evidence for 312-20
 Porcupine Seabight Basin
 Lower Cretaceous 325
 regional affinities 325-30
 tectonic and igneous implications 330-2
 Tertiary 325
post-rift 330
Tertiary, N Atlantic borderlands 429-48
 Baffin Island–Greenland 431-4
 Britain and Ireland 443-7
 central E Greenland 436-41
 Faeroe Islands 441-2
 northern E Greenland, Scoresby Sund to Shannon Island 434-6
 Rockall Plateau and Rockall Trough 442
 Skagerrak 447
 Voring Plateau and Faeroe–Shetland escarpment 442-3
Tertiary, timing of 7
 timing of 10-11
igneous centres 293, 306, 319-20
 margins of Porcupine Seabight Basin 309, 311
igneous crust
 thick, and dipping reflectors 45
 thickened under margin 11
igneous occurrences, regional, continental shelf, W of
 British Isles 326
igneous reactivation 331-2
ignimbrite 80
Igtertiva Formation 181, 183, 187, 189, 193, 439
illite 398
ilmenite 78, 197, 257, 300, 411
Imilik gabbro 440
inclusions
 bytownite 300
 Mg–chromite 70
incompatible element abundances, Lower Lavas, E Greenland 168-9, 170-4, 182, 188, 189
Voring Plateau 77
incompatible element enrichment 71, 174
incompatible elements
 acquired from grain-boundary assemblages 175-6
 decoupled variation in 190-1
inner-shelf environment 312
Interbasaltic Formation, Antrim 343, 355, 373
intraplate deformation, Gallic subplate 29-30
intraplate swells 8
intrusions 439-40
alkaline 201
arcuate 341-2
basic 201
E Greenland, dating of 205-11
hypabyssal 203-11
igneous 43
Killala, gabbric, Ros Gabbro 312, 320, 322
lower crustal 388
mafic 151
minor 337
multiple 372, 436
rhyolitic 151
syenitic 440
Tertiary granite and syenite 211
intrinsic bodies, lower crustal 385
intrinsic centres see volcanic centres
inversion 5, 25
NE Porcupine Basin 322
radial 332
Stappen High 141, 144, 145
inversion tectonics 29
Ireland 343-4
igneous activity 443-6
silicic pyroclastic rocks
extrusive rocks 373-4
Sleive Gullion 374-6
Western, igneous outcrops 320
Irminger Formation 162
isostatic compensation, deep 19, 21
isostatic equilibrium 5, 10
isostatic uplift 21
Alpine Range 27
isovelocity contours 38, 39, 40, 41, 42
Jan Mayen Fracture Zone 77, 90, 119, 158, 222, 443
Jan Mayen Ridge 50
subparallel reflectors 63
Tertiary sediments 91
Jan Mayen Ridge microcontinent 21, 158
tectonic and volcanic events 85-92
plate tectonics 85
structure 85, 87, 88
timing and evolution of 91
volcanic provinces 87, 90-1
K-Ar dating
Ardnamurchan rocks 342
basic igneous rocks 258, 259-60
Rockall Trough volcanics 304-5
kaersutite 210, 411
Kaiserstuhl volcanicity 27
Kangerdlugssuaq dome, uplift of 21
Kangerdlugssuaq hot-spot 158
Kangerdlugssuaq lineament 436, 441
Kangerdlugssuaq region 181
change in tectonic environment and type of
magmatism 441
cost-parallel dykes 439
Tertiary volcanism 161-77
geochemistry 166-73
regional outline 161-2
sampling areas and petrography 162-5
Kangerdlugssuaq syenite intrusion 201, 207, 211, 440
kaolinite 367, 398
Kap Boswell syenite intrusion 201
Kap Dalton, volcanogenic conglomerates and sandsones 439
Kap Deichmann syenite intrusion 201, 210, 211
Kap Edvard Holm 439
Kap Gustav Holm
extension zone 119
gabbrro 440
Kap Parry
alkaline complex 210-11
central intrusive complex 436
Kap Simpson central intrusive complex 436
Kap Syenit central intrusive complex 436
Kialineq complex 210, 211, 440
Kilchrist, Eastern Red Hills, Skye 367, 368, 375
Killala Gabbro 320, 322, 344
kimberlites 192
Kisselovia coleothrypa zone 400
Kiviqoq Fjord, E Greenland 205
Klaksvik flow, silicic 229
Knudshoved Member 400
Kolbeinsey Ridge 21, 75-6, 85, 158
Kollafjordur Member 227, 228, 229, 230
Kong Oscars Fjord 210, 211
Kraemer Ø
dyke swarms 162
THOL-2 dyke swarms 165
Kraemer Ø syenite intrusion 205, 211
Kruuse Fjord layered gabbro 440
La/Ta ratio 279
indicator of source character 127
Labrador Sea, commencement of active seafloor
spreading 431
labradorite 124, 125, 257, 263, 278, 301, 411
laccoliths, inferred 321
laminar flow 374
lamproites 192
lamprophyre 434, 447
high-pressure fractionation residue (Ubekendt)
447
lapilli 227
accretionary 78
pumiceous 77
laterite 343
lava 366
alkaline 203, 204
Antrim 343-4
basalt 342, 343, 344
basaltic 440
basaltic 120, 415, 417, 430, 440
basanitic 440
basaltic 372
silica-undersaturated 436
Blosseville, Fe-Ti-rich oversaturated tholeiite 438
compound 372
early Tertiary, NE Rockall Trough 283-91
E Greenland
K-Ar analyses 204
lower Tertiary, palaeomagnetic properties 215-17
reverse polarity 218-19
areal distribution of facies 287-9
implications for subsidence 289, 291
seismic character and interpretation 283-7
sub-lava intrusions 289
Eigg 343
Faeroese sequence 226, 244
lava (cont.)
dating of 234
hawaiitic 440, 445, 446
Kangerdlugssuaq region, Lower basalts 162–3
late Palaeocene, Erlend Complex 244
Mikis-type 167, 170
Mull 339–40
nephelinitic 440
parental, Fe–Ti tholeiite 412
pitchstone 342
porphyritic 442
Prinsen af Wales Bjerre (PWB) 199
quartz tholeiite 435
rhyolite 372, 373
Scoresby Sund region, cyclical compositional variation 438
Skye 342
subaerial 291, 430
Tertiary 443
Britain, reversed polarity 217
tholeiite
olivine 442
silica-oversaturated 442
tholeiitic 197, 438, 441
trachytic 369
lava edges (scarps) 291
build up of 284, 286, 287
lava fields 430, 434
basalt, erosional remnants of 434
Hebridean 446
see also lava plateaux
lava flows 85, 87
andesitic, subaerial extrusion 53
basalt 65, 101, 112, 115, 376
andesitic 78, 79
tholeiitic 434
basaltic-andesitic 51
cut by normal faults 386
dacitic 78
fine-grained 69
glomerophyric 124
Goban Spur Basin 312, 325
icelandite 446
Lower Basalt Formation, Faeroe Islands 228
magnetization of 216, 217
obsidian 373
peraluminous-andesitic 51
porphyritic 226
rhyolite 365, 373, 376
stacked 3
subaerial 65, 131, 432
basaltic 91
submarine 90, 132, 322
T-MORB composition 70–1
tholeiite, Mg-poor 433
tholeiitic 446
trachyte 365
Upper Cretaceous 315
vesicular 124
lava migration 120
lava pile, structure of 148
lava pillows 248
lava plateaux 430, 446
early Tertiary, Faeroe Islands 441
lava sheets 283
lead isotope geochemistry, basalts SW of Rockall Plateau 128–30
leucogranite 361
LIL element depletion 127, 128, 130
Lillebaelt Clay Formation 397, 400
Lilloise intrusion 205, 207, 211
limestone 315
Danian 316
Lista Formation 254, 399
basal tuffs 260
lithic fault complex 87, 90
formation of 91
lithosphere
continental, fracturing of 46
enriched, influence of 175–6
fundamental zone of fracturing 439
Pacific, subducting 15
subcontinental
E Greenland 192
strongly depleted 132
U-depleted 128–9, 130
two-layered 53
lithosphere–asthenosphere boundary 53
lithospheric elevation 19
lithospheric extension 45, 53
melting due to pressure release 44
lithospheric mantle component, Lower Lavas, E Greenland 182
lithospheric plate drag 19
lithospheric stretching 5, 8–9, 130, 330
accompanied by vertical movement 439
causing pressure perturbation 11
lithospheric thinning 10, 45, 53, 176, 430
differential 53
Liverpool Land margin 91, 92
Loch Ainort epigranite 342, 416
Loch Ba Centre 387
Loch Ba Felsite 339, 372
Loch Don Anticline 387
Lofoten–Vesterolen islands 52
Long Loch Fault 387, 445
Lopra High 141
Lopra drill-hole 226, 228, 234, 235
Lousy Bank 225, 229, 230, 233, 271
Lower Basalt Formation, Antrim 276, 306, 343, 373
Lower Basalt Formation, Faeroe Islands 119, 120, 226, 227–8, 230, 235
accumulation rates 234–5
subsided during extrusion 228
Lower Basalts, Kangerdlugssuaq region 161, 268
deppleted tholeiites, Iceland type 167–8
deppleted tholeiites, Icelandic type 167–8
geochemistry of 166–70
incompatible element geochemistry 170–3
major element composition 168–70
Mikis-type lavas 167, 170
picrite-anakamite series 166, 167, 168–70, 170–2, 176
tholeite series 166–7, 170, 172, 173
lower crustal intrusions 388
Lower Lava Series, Faeroe Islands, tholeitic 416
Lower Lavas, E Greenland
enriched component 188–93
Index

lithospheric component 192-3
inferences from geochemistry of lava groups 188-9
isotope geochemistry of 181-93
picrite-ankaramite series lavas 189
reservoir types 192
Lower lavas, Kangerludsgussuak 438
Lower Plateau Basalts, E Greenland 201
Lower Series, Vering Plateau 59, 65, 443
lithology and petrography 78-80
sediments 80
Lower Series basalt lavas, E Greenland 435
Lower Series basalts, Antrim 446
Lower Series basalts, Faeroe Islands 217-18, 222, 266, 268, 279, 280, 281, 441-2
normal polarity intervals 267
Ti-rich tholeiites 266
Lower Tertiary Igneous Province, N Atlantic 217-19
LREE, Icelandic basalts 246
LREE depletion 125, 127, 130, 186, 445
LREE enrichment 197, 297
Lundy granite, dating of 446
Lundy Island 344-5, 346, 444
Maclean’s Nose, Ardnamurchan 371, 373
maculose fabric 256
Magg Dan Formation 438
magma 20
acid 354, 362
alkaline 211, 440, 447
mafic, Si-deficient 447
volatile-rich 376
alkaline affinities 376
anatetic crustal 431
basaltic 131, 257, 260, 306, 413, 415, 445
crystal of 373
dacite 306, 370
eruption of 111
evolution of type with time 176
ferrobasaltic 77
granitic 447
high-K 79
intrusion of, sill-sediment complexes 248
lamproitic 192
lateral injection of 331
mafic 376, 440
mixed 371, 372
mixed-crustal source 303
oceanic basin 256
palaeohydrostatic head of 320, 321
parental
alkaline 376
basic, mantle-derived 361
peralkaline 411
picrite 175-6
picritic tholeiite 433
Skærgaard intrusion 167
peralkaline 447
picrite-ankaramite series 174, 176
plume-derived, diversion to ocean-ridge crest 20-1
porphyritic felsite 371
preferential channelling of 431
primitive 199, 436
rhyolite 356-7
salic 440, 447
tephriphialdial 447-8
silicic 374, 375, 376, 415
volcanic rich 368-9
Steve Gullion, generation of 358
tholeiitic 80, 118, 125, 376
ultramafic, intrusion of 391
ultrapotassie 192
Vering Plateau 71
magma ascent 433-4
British Tertiary Igneous Province 443
magma chambers 151, 197-200, 211, 306, 366, 376, 431, 436, 439
magma generation 438
magma mixing 192, 193, 197-9, 361, 431, 447
inhibited 306
magma ponding 306, 439
magma pressure 248
magma sources
picrite-ankaramite series 174
recent 80
magma replenishment 197-9, 200
magma ridges 25, 384
feeding dyke swarms 386
magma-gas emulsion 375
magmatic erosion 176
magmatic thinning and extraction model 176-7
magmatism
alkaline 211, 372, 376
basaltic 253-61
basic, tholeiitic 211
Cretaceous 322
late-stage 440
magnitude of the controlling stress field 385-6
N Atlantic, observations on 3-8
opportunistise 330
tholeiitic 446
tholeiitic basalt 440
Thulean 325
Thulean related 332
magnetic anomalies 7, 51, 153, 158, 319, 330, 447
Brendan Igneous Centre 319, 322
Iceland 147-9
localized 148-9
offset 149
magnetic quiet zones 95, 96
magnetic vectors, stable 216
magnetite 197, 257, 316
mantle convection 17, 18
in an extensional environment 45
and plume hypothesis 15-16
mantle diapirism 130
mantle jet 181, 193
mantle melt extracts 447
mantle melting 434, 436
mantle plume hypothesis 15-16
consequences of 22
criticisms 15
mantle plumes 8, 10, 21, 413, 417
conduit for upward flow of hot material 16
Faeroes–Iceland–Greenland 413, 414
Iceland 8, 11, 21
producing high pressure in asthenosphere 20
mantle residuals 192
marble 316
Margaret's Spur 253
margin subsidence 124
marginal chill, glassy 256
marginal highs
Bjornoya 135, 137, 141, 143, 144
formation of 49–54
markers
ash 141, 229, 234, 260, 325, 442
glaucoclinic 124
seismic 137, 141
volcanic 3, 85, 90–1, 92
mass-flow deposits 91
Maureen Formation 408
Meall Breac, Rhum 369–70
mellitolite 447
melt
basaltic 120
picrite 176
residual basaltic 391
mesolite 299
metamorphic alteration 186
metamorphic aureole 254, 255, 322
metamorphism 110, 129, 316
contact 255
thermal 241, 256, 370, 375
Mg-chromite 70, 295
Mg-kataphorite 409, 411
Mg-pigeonite 124
mica 80, 205, 257
K–Fe 256
white 78
microfossils, siliceous 263, 265
microgabbro 345
microgranite 350, 368, 369, 376
riebeckite 343
microphenocrysts 299
augite 165
labradorite 128
olivine 299
plagioclase 124, 125
Middle Basalt Formation, Faeroe Islands 119, 226–7, 228, 229, 230
accumulation rates 235
Middle Series basalts, Faeroe Islands 218, 222, 266, 267, 268, 281, 441, 442
Ti-rich tholeiites 266
Mikis Formation 163, 192
isotope geochemistry 187
picritic flows 183
Milne Land Formation 438
Mincn Fault 386, 388, 445
moat rhyolites 373
mobilization 141
Mohns Ridge 157, 158
Moho 108
depth to 5, 40, 42, 105, 110, 361
Moho positions 105
Moho reflection 40
montmorillonite 30
montmorillonite/beidellite 78
MORB 129
N–type 75, 127, 130, 131–2, 246, 442
T–type 75, 246, 247
mordenite 78–80, 301
More Basin 49, 52, 119, 241, 253
divergent-planar reflectors 58, 60
formation of oceanic and transitional crust 243
sill intrusion 248
More extension zone 119
Mors 399
Morvern dyke swarm 385, 387
Mourne Mountains central intrusive complex 344, 349, 361, 444
main intrusive activity 358
Mourne Mountains granites 344, 346, 350, 358
dating of 446
faulting of 387–8
Rb–Sr data 350–5
Muck 342
alkaline basalt lavas 445
mudstones, siliceous 412
mugearite 342
Mull 339, 41, 345, 346, 445
Central Group 339
dating of volcanism 446
early plateau lavas 260
flood basalts 217
Plateau Group 276, 305–6, 339
silicic pyroclastic rocks 372–3
Mull central intrusive complex/igneous centre 339, 365, 386, 443
faulting of 386–7
pyroclastic rocks 372–3
Mull Volcano, explosive climax 261
Munkagrunnur 230
Myggbukta caldera complex 435–6
Myggbukta Volcano 436
nannofossils, calcareous 397, 407–8
natrolite 296, 299, 301
Naviculopsis constricta zone 400
nepheline 207, 299
nepheline-hawaiites 436
nepheline syenite 436, 440
nephelinite 436, 447
net-vein complexes 211
Newry Fault 387–8
Newry Granite, Caledonian 374
Newry igneous complex, possible source for Mourne acid magmas 355, 358
nontronite 70, 397
nordmarkite 207
N Atlantic
evolution of 3–11
initial opening 181
pre-drift reconstruction 430, 441
Tertiary volcanism 416–17
topographic swell 16–17
N Atlantic borderlands, history of Tertiary igneous activity 429, 48
N Atlantic geoid and gravity high 17–20
N Atlantic margins, remaining above sea-level 5
NE Atlantic
before onset of seafloor spreading 236
early Tertiary basalt and tuffaceous sandstones, Hebrides Shelf and Wyville-Thomson Ridge 271-80
early Tertiary opening 119-21
multiple and propagating rift model 157-8
opening of 234, 235, 358
NE Atlantic margin, Tertiary structures 421, 422
North Sea Basin change in patterns of tectonism and sedimentation 416
North Sea gas fields 29
North Sea stratigraphy 407-8
N-S trend, Britain and Ireland and Kangerdlugssuaq 'rift' 444-5
NW Britain, early Tertiary stress regimes 381-8
NW Europe, compression of 30
NW Europe, Palaeocene-Oligocene tectonics 25-30
northern Irish Atlantic opening 27
Palaeogene clay mineralogy 402
record of early Tertiary N Atlantic volcanism 407-18
North Sea stratigraphy 407-8
North Sea gas fields 29
North Sea stratigraphy 407-8
North Sea gas fields 29
North Sea gas fields 29
North Sea Sea, early Tertiary stress regimes 381-8
north of Labrador Sea 29
Norwegian-Greenland Sea formation of 49
Norwegian-Greenland Sea, opening of 439
Norwegian Sea, opening of 17
Nugssuaq peninsula 433
Nummulites rockallensis 278, 279
obsidian
perlitic 373
porphyritic 344, 355-6
Pacific subduction zone 16
N Atlantic reconstruction 220
partial melting 8-10, 71, 72, 75, 80, 127, 128-9, 131, 132, 198, 279, 306, 358, 376, 433, 446
oceanic crust 11, 57, 95, 104, 129, 225, 250, 293, 325
Ocean Drilling Programme (ODP) Leg 104 57-66, 307, 443
Oceanic crust 11, 57, 95, 104, 129, 225, 250, 293, 325
Oceanic drift 23
Oceanic lithosphere, new, subsidence of 431
offlap 57, 58, 59
opalising reflectors 58, 60
olivine 124, 163, 316
altered 299
reaction coronas 257
serpentinitized/chloritized 257
olivine crystallization 197, 198
olivine fractionation 169, 199
Oółst Formation 77-8, 397-8, 403
age of 400
ash layers 399
palaeomagnetic pole positions
British and European Tertiary Igneous Provinces 220
N Atlantic reconstruction 221
palaeomagnetic poles 215, 219-22
palaeomagnetism 147
role of 339
Palaeoperidinium pyrophorum informal zone 265
palaeoshorelines 284, 287, 291
palaeosols 235
lateritic 445
palaeoecosomes, Voring Plateau 65, 66
palagonite 316
palagonitization 255, 259
partial melting 8-10, 71, 72, 75, 80, 127, 128-9, 131, 132, 198, 279, 306, 358, 376, 433, 446
convective 43-5, 46, 53
depleted mantle source 130
of low Rb-Sr ratio greywackes 355
Index

plate adjustment, and magmatic activity, E Greenland 211
plate boundaries
accreting 144, 151
divergent 45-6, 147-53
early Palaeocene 144
Hatton Bank–Eurasia Basin 49
Iceland
accreting 151
divergent 147-53
plate collision, and stress fields 388
plate decoupling 236
plate evolution, influence of N Atlantic thermal anomaly 21
plate motion 136
plate movement, Barents Sea area, directional change 144
plate separation 434, 436, 441 coincidental with Caledonian orogeny trends, E Greenland coast 434
plate tectonics, Jan Mayen Ridge 85
plateau basalts 75, 287, 289, 361
Antrim 349
Skye 386
subaerially erupted 115
tholeiitic 447
Plateau Basalts, E Greenland 183, 193, 235 isotope geochemistry 187
palaeomagnetic properties of 215-17
Plateau Basalts, Kangerdlugssuaq region 151, 157 fed by Flado and Haengefjeldet dykes 173
plateau lavas 415, 416
tholeiitic 440
plugs
dacitic 373
dolerite 344
igneous, intrabasinal 319
peridotite 391
quartz porphyry 374
volcanic 312, 320, 323-4, 323, 325
plutonic and hypabyssal activity, E Greenland 211
plutons
basic, Cuillins 361
E Greenland 211
mafic/ultramafic 443
pyroxene granophyre 374
pneumatolitic activity 376
polar wander, apparent (APW) 219
polarity time-scales 339, 340, 341, 345, 346
inadequacy of 148
polarity zones 147
thickness of 148
Porcupine Abyssal Plain 325
Porcupine Basin, upper 319
Porcupine Igneous Province 330
Porcupine Median Volcanic Ridge 311, 316-17, 318, 330
associated sills 319
initiation of 320, 325
structure of 321-2
Porcupine Seabight Basin
igneous activity
Jurassic 312, 316, 320
Lower Cretaceous 312, 314-15, 316-19, 320-2

porphyritic texture 124
pitchstone 343, 345
plagioclase 70, 78, 124, 163, 165, 197, 203, 255, 256, 259, 263, 274, 278, 295, 299
albitic 163
calcic 316, 412
sodic 372
plagioclase crystallization 170
planktonic foraminifera 265
plastic deformation 430
plate acceleration 236

Norwegian volcanic, early Cainozoic evolution of 49-54
rifted 50-1
Rockall type 123-32
shelf 289
subaerial volcanism 111
subsidence and onset of seafloor spreading 52-3
volcanic, and dipping reflectors 57
Pb isotopes
early Tertiary volcanics, Rockall Trough 302-3 indicator of crustal contamination 191
Pb isotopic composition, Lower Lavas, E Greenland 187-8
pegmatites 210
peraluminous rocks 307
peridotite 391, 447 mantle, enriched 175
perlitic 78
petroleum source rocks 307
petrophysical log cycles 314-15
phenocrysts 70, 78
augite 167
chrome-endiopside 163
chromite 163
cordierite 300, 305, 306, 443
fayalite 375
hedenbergite 375
hypersthene 443
labradorite 274
magnesian hypersthene 300-1
olivine 165, 167, 169, 197, 295, 299, 306
plagioclase 72, 124, 197, 277, 299, 375, 443
flow alignment 274
unaltered glass inclusions 413
pyroxene 197
quartz 255, 375
sanidine 375
Vestmanna drill-hole 227
phlogopite 205
phosphorus 170
picrite 161, 166, 186, 203, 230, 432, 435, 438, 447
high-Ti 176
pigeonite 78, 197
pillow breccia 432
pillow lavas 321, 325, 430, 434
pliotaxitic texture 124
pitchstone 343, 345
plagioclase 70, 78, 124, 163, 165, 197, 203, 255, 256, 259, 263, 274, 278, 295, 299
albitic 163
calcic 316, 412
sodic 372
plagioclase crystallization 170
planktonic foraminifera 265
plastic deformation 430
plate acceleration 236

partial melting (cont.)
in the mantle 431
reservoir rock 362
and rhyolite magmas, NE Ireland 356-7
small-scale 445
passive margin development 111
and pulse of magmatic activity 37
passive margins 43, 431
Norwegian volcanic, early Cainozoic evolution of 49-54
rifted 50-1
Rockall type 123-32
shelf 289
subaerial volcanism 111
subsidence and onset of seafloor spreading 52-3
volcanic, and dipping reflectors 57
Pb isotopes
early Tertiary volcanics, Rockall Trough 302-3 indicator of crustal contamination 191
Pb isotopic composition, Lower Lavas, E Greenland 187-8
pegmatites 210
peraluminous rocks 307
peridotite 391, 447 mantle, enriched 175
perlitic 78
petroleum source rocks 307
petrophysical log cycles 314-15
phenocrysts 70, 78
augite 167
chrome-endiopside 163
chromite 163
cordierite 300, 305, 306, 443
fayalite 375
hedenbergite 375
hypersthene 443
labradorite 274
magnesian hypersthene 300-1
olivine 165, 167, 169, 197, 295, 299, 306
plagioclase 72, 124, 197, 277, 299, 375, 443
flow alignment 274
unaltered glass inclusions 413
pyroxene 197
quartz 255, 375
sanidine 375
Vestmanna drill-hole 227
phlogopite 205
phosphorus 170
picrite 161, 166, 186, 203, 230, 432, 435, 438, 447
high-Ti 176
pigeonite 78, 197
pillow breccia 432
pillow lavas 321, 325, 430, 434
pliotaxitic texture 124
pitchstone 343, 345
plagioclase 70, 78, 124, 163, 165, 197, 203, 255, 256, 259, 263, 274, 278, 295, 299
albitic 163
calcic 316, 412
sodic 372
plagioclase crystallization 170
planktonic foraminifera 265
plastic deformation 430
plate acceleration 236
Upper Cretaceous 315, 320-2
Tertiary 315-16, 319-20, 322-4
syn- and post-rift igneous activity 309-32
post-Devonian main fault, northern E Greenland 434
potassium mobility 258
preferential chanelling of magma 431
prehnite 163
Presnal Mhor basalt/lavas 278, 299, 306, 446
pressure perturbation 11
pressure variation, lateral, upper mantle 19
Prinsen af Wales Bjerge 197-9
lavas 440
pseudobrookite 411
pseudomorphs, saponite 70, 124
pull-apart tectonic setting 136, 137, 141
pumice layers 368
Pyrenean orogenic belt 29
pyrite 78, 80, 257, 398
pyroclastic breccia 365, 367, 369, 370-1, 372, 374
unbedded 368
pyroclastic deposits, NE Atlantic 415
pyroclastic rocks, silicic, British Tertiary Igneous Province 365-77
pyroxene 72, 124, 165, 210, 255, 259, 299, 300, 305, 316
brown 295
Ti-rich 296
titaniferous 276
pyroxenite 175
alkali 436
pyroxenization 391
Qajarsak granite 210
quartz 78, 80, 163, 256, 316, 398
poikilitic 78
quartz grains, floating 260
quartz porphyry 368
Arran 343
quartz syenite 205, 211, 440
Raasey Fault 386
recrystallization 370, 375
recrystallization effects, pyroclastic breccias 367
reddening 69, 299, 305, 432, 445
tuff beds 76
REE, Kangerdlugssuaq region 170
REE enrichment 78
REE patterns, olivine tholeiite 276
reflectors
ash marker, North Sea 412
flat-lying 137
reflector P, Wyville-Thomson Ridge 272
stepped 289
subhorizontal 283
top-Cretaceous 244
top-Palaeocene 244
regression 430
remagnetization, of early intrusions, Mull 340
remanence contrasts 147
remanence polarity structure 148
remainces, stable 216
remanent magnetization 153
residua, salic 431
reverse magnetization, Upper and Middle Faeroe Islands basalts 218
reverse polarity 215, 339, 415, 416
and British Tertiary Igneous Province lavas 345, 346
E Greenland lavas 218-19
Faeroe Island rocks 267-8
Lower Series, Faroe Islands 222, 234
Tertiary lavas, Britain 217
reoorking 279, 368, 369, 407
Reykjanes Ridge 7-8, 21, 75, 157, 158
Rheinisch Massif, uplift and volcanism 29
rheomorphism 367
Rhine Graben 25, 27
related to Alpine Orogeny 27, 29
subsidence of 29
Rhume 375
central igneous (volcanic) complex 342, 385, 444
dating of 446
siting determined by Long Loch Fault 445
Central Series ultrabasic rocks 445
Eastern Layered Series 391
Main Ring Fault 369
Northern Marginal Complex 369
silicic pyroclastic rocks 369-71
ultrabasic complex 391
Western granophyre 342, 343
Rhume central volcano 445
Rhume layered complex 369
rhyolite 344, 349, 373, 432, 435, 447, 448
porphyritic 355-6
Tertiary, NE Ireland 355-7
ridge emplacement, model of (Porcupine Median Volcanic Ridge) 320-2
ridge jump 102, 103, 251
ridge-push, N Atlantic 30
ridge-push force 21, 22
riebeckite microgranite 343
rift basins 52
intracraticonic 309
rejuvenation of 430
rift model, NE Atlantic 157-8
rift pillow 330
rift system, propagating/retreating 158
rift zones
continental, controlled by older lineaments 430
northern E Greenland 434
rifting 10, 50-1, 52, 145, 193, 235, 248, 293, 421
late Jurassic, Norwegian–Greenland Sea 44-5
Mesozoic 434
rifting to drifting transition 66
rifting process, N Atlantic 4-5, 7
rifts
axial, formation of new oceanic lithosphere 436
lateral 436
Mesozoic 430
ring-dykes 339, 351, 357, 368, 372, 374, 376
felsite 387
Loch Ba 373
Index

seafloor spreading 7, 21, 27, 103, 147, 330, 439
abortive 293
along Senja fracture zone 422
early stages 120–1
basalt eruption 118
Greenland–Norwegian Sea 35–46, 325, 421
Greenland Sea
northern 136
southern 144
Icelandic type 54
initiation of 43
above sea-level 111
NE Atlantic 112
Labrador Sea 431
cessation of 211
mid-Tertiary 112
westward shift 111–12
NE Atlantic 111
oblique 157
onset of 132
Faeroes–Greenland 235
Goban Spur–Biscay continental margin 325
at passive margins 52–3
shallow marine 121
subaerial 5, 37, 103, 121, 123, 157
and down-dip dipping reflectors 111
ey early Tertiary, characteristics of 112
Palmason model 103–5
seafloor-spread anomalies 90, 95, 108
seafloor-spread axes, phase of reorganization 330
seafloor-spread systems, oblique 136
secular variation, geomagnetic 215, 216, 219, 339
incomplete averaging 219–20
sediment accumulation 423, 430
sediment loading 291
sediment prism, Tertiary/Quaternary 273
sediment supply and sill intervals 248–9
sedimentary basin formation, MacKenzie model 111
sedimentary basins 445
asymmetric, Mesozoic 445
Midland Valley of Scotland, Antrim extension 445
sedimentary sequence
Jan Mayen Ridge 87
Tertiary, NE Rockall Trough 289
sedimentary wedge, Cainozoic 135–136, 141
sedimentation, Tertiary 421
sedimentation and deformation, Tertiary, SW Barents
Sea and Svalbard 141–2, 144
sediments
ash-bearing 254
Cretaceous, marine and non-marine 432
Cretaceous and lower Tertiary 437–8
glaucolithic 132
hyaloclastite 287
inner-shelf 323
marine 90, 226, 316
Mesozoic 438
Oligocene 386
Palaeogene 229
shallow-water 430
sub-lava, compaction of 291
syn-rift 248
Tertiary, Wyville-Thomson Ridge and Hebrides
Shelf 278–9

ring-faults/faulting 368, 369, 440, 436
Ringvassøy–Loppa fault zone 144
Rockall Bank 225
Rockall–Faeroe microcontinent 27
Rockall–Faeroe Plateau, morphology of 115
Rockall–Faeroe rift, volcanism 25
Rockall–Hatton Bank, dipping reflectors 108
Rockall Island, granitic 345
Rockall margin 52
Rockall microcontinent 442
Rockall Plateau 225, 223, 271
flexured dipping reflectors 62–4
granite 345
igneous activity 442
subsidence of 27
Rockall seastack 442
Rockall Trough 115, 225, 230, 325, 345, 448
gleary Tertiary volcanic rocks 283–91, 293–307
basaltic rocks, petrography and chemistry 295–300
dacitic rocks, petrography and chemistry 300–1
isotope geochemistry 301–5
formation of 293
igneous activity 442
northern margin, sedimentary cover 271–2
oceanic and transitional crust, formation of 243
southern 271
Rømer Fjord Formation 438
Ros Gabbro (Killala Gabbro) 320, 322, 344
Rosemary Bank 283, 293
Røsnaes Clay Formation 397, 414
ash layers 400
mineral composition of clay 398
Sandy Braes
central vent 446
porphyritic obsidian 344
sandstone 301, 411
saponite 124, 125
Sarqatåq qaqå central intrusive complex 432
schist, quartz-mica 80
Scoresby Sund 166, 173, 218
plateau basalt sequences 215
Scoresby Sund Lavas, E Greenland 182, 438
Scoresby Sund–Shannon Island, igneous activity 434–6
Scotland, NW continental margin 283
plateau basalts 289
Scourie dykes 130, 384
Scourie gneisses 130
Seabight Igneous Centre 318, 322, 325, 330
St Kilda, faults 387
St Kilda intrusive complex 345, 346, 445
salite 411
Sandfell laccolith 151
Sandoy, Faeroe Islands 227, 228
sandstone 278–9
volcaniclastic 316
tuffaceous 278–9
volcanogenic 439
reworked basaltic detritus 279
Sandy Braes
central vent 446
porphyritic obsidian 344
sandstone 301, 411
saponite 124, 125
Index

volcanic, Denmark, provenance and transport mechanism 403
volcanic-rich 312
volcaniclastic 78, 80, 81, 287, 312, 415, 417
North Sea Basin 407, 408-14
volcanogenic 312, 438, 439, 442
Wyville-Thomson Ridge 272
seismic marker
Barents Sea, tuff layer 141
tuff deposits, early Tertiary 137
seismic refractor, Faeroe Islands 226
seismic unconformities 62
seismic velocities, lower crustal 5
Sele Formation 78, 253, 254, 255, 260, 261, 399-400, 408, 411
selective contamination 362
selective diffusion 361
Senja fracture zone 135, 136, 137, 141, 144, 222, 421, 422, 423
Senja Ridge 136, 141, 142, 421, 422
inverted 135, 144
sericitization 165
serpentine 299
Sgurr of Eigg pitchstone 343, 345, 346
Sgurr nan Gillean, Rhum 371
shale 255, 434
indurated (Palaeozoic) 374
Kimmeridgian–Oxfordian 312
lacustrine 226
shear
compressional 423
early Tertiary 422
dextral 384, 386
differential 421, 422
extensional and compressional 421
parallel, along Senja fracture zone 422
pure 10
and dyke formation 382
regional
NE Greenland–Svalbard 135, 144
Norwegian Sea–Eurasia Basin 136
transtensional, simple
dextral 383-4
and dyke formation 383
shear movement 421
shear stress, and magma ridges 27
sheet intrusions 331
shield morphology 322
shorelines, submerged 230
siderite/ankerite granules 256
sideromelane shreds 78
Sigmundur Seamount 115, 116
silica 257
silicified layers 397
sill complexes 112, 289, 311, 319
Fastnet Basin 312
sheeted 257
sill emplacement episodes, Faeroe–Shetland Basin 244–5
sill-sediment complexes
Einsele model 248–50
Sheridan model 250–1
sill-swarms 430
sills 227, 343
basic 254
composite 342
development of 430
dolerite 201, 260, 376, 448
E Greenland 204–5
petrography of 255–7
Faeroe–Shetland Channel 289
internally differentiated 245
intrusive changing to extrusive lavas 244
MORB-type rock 246, 248
multiple injection 323–4
olivine-dolerite 254, 256
picrite 289
Porcupine Basin 319
NE 316
quartz porphyry 343
Tertiary 289, 291, 319
tholeiitic 435
silt winnowing 402
Skagerrak 431, 447
as ash layer source 413
igneous activity, evidence of ash layers 447
Skagaard intrusion 3, 162, 201, 205, 211, 439–40
Skagerrak volcano 445
Skaergaard Formation 183, 187, 189, 438
Skye 345, 346
central intrusive (volcanic) complex 386, 444, 445
dyke swarms 383, 384
flood basalts 217
intrusives, dates of 416
Main Lava Series 276
persistent volcanism 445
silicic pyroclastic rocks 366–9
Tertiary igneous rocks 342
Tertiary volcanics 128
Skye lavas 445
unradiogenic Pb 191
Slieve Gullion central intrusive complex 344, 349, 361, 386, 444
age of 357–8
cut by dextral strike-slip faults 387
pyroclastic rocks 374–6
sheeted complex 350, 358
temporal trend, initial 87Sr/86Sr ratios 362
Slieve Gullion Felsite 375
Slieve Gullion porphyritic granophyre 376
Slieve Gullion ring-dyke 376
Slyne Fissures 319, 330, 331
alignment 324
periods of activity 322–4
Slyne Ridge 309
Slyne Trough 319
Small Isles, the 342–3
dyke swarms 383, 384, 385
smectite 228, 275, 278, 289, 295, 296, 299, 301, 397, 401, 409
chemical composition 398
dominance of 403
North Sea sedimentation rates 402
volcanic origin possible 398
Sole Pit Basin 29
Sortskaer, E Greenland 210
source-rock melting 447
sphene 411
Spitsbergen
 central basin 144
 compressive shortening 422
 fold and thrust belt 141, 144
Spitsbergen Central Tertiary Basin 136, 421, 422
spreading axis, propagating behaviour 157
spreading centres 434
Guaymas basin-type 248
Iceland 158
 and sheeted complexes 439
spreading ridge, S of Greenland–Senja fracture zone 157
spreading ridge crest, submergence 124
Sra na Creitheach, Skye, pyroclastic rocks 368
stacking velocities 58
Staffa magma type 80
Stappen High 135, 136, 137
 extensional regime 421
 inversion of 141, 144, 145
stocks, granophyre 357
stoping 368-9, 436, 440
Storfjorden Trough 423-5
Strath na Creitheach, Skye 342
stress
 compressional 385
 shear 27
 tensile 439
 tensional 27, 385, 430, 439
stress fields 10, 381, 384, 385–6, 386, 388
stretching prior to opening 53
strike-slip system 144
strontium isotope/isotopic data 355, 358
 geochemistry 301, 361–2
 Mourne Mountains granites 351–5
structural grain 384
Moine rocks 385
subducting slabs 16, 19
submarine fans 91
subidence 5, 7, 10, 51–2, 58, 131, 144, 248, 330, 370, 421, 422, 423, 432, 435, 438, 439
 axial 430
 Bjornoya Basin 421
 central 375
 crustal 386
 Faeroe Islands 229
 Faeroe–Shetland Channel 121
 initial, fault-defined 52
 of intrusive centre 54
 and lava edges 284, 287
 and lava extrusion 69
 margin 124
 North Sea Basin 416–17
 post-Eocene 331
 Rhine Graben 27
 Spitsbergen 421
 Tertiary 289
 thermal 54, 121, 291
two-phase, NE Rockall Trough 291
subsidence patterns, North Sea exploration wells 45
Suduroy, Faeroe Islands 227, 228, 234
coil seams 226
sulphide, brassy 256
surface deformation 19

Index

Svalbard 222, 421
 Svalbard Platform 135, 145
 Sverenhtuk peninsula, lavas 432
 Sverdrup Basin, compression of 222
 swarm axes 381–4
 Sydbrae area, rotation of 219
syenite 201, 207, 210, 344, 436, 440, 447
 agpaitic 441
 fayalite 211
 fayalite-hedenbergite 210
 feldspatothial 447
 granite-quartz 210
 K-Ar analyses, Kangerdlugssuaq area 208–9
 quartz 205, 211
syenite veins, Kangerdlugssuaq area 210
syenogabbro 436
syn-rift sediments 248
tachylite 257
Taos Field volcanic plateau 80
Tardree Rhyolite 344
Tardree–Sandy Braes area 355–6, 373, 376
tectonic activity
 early Tertiary, NW Europe 25
 late Palaeozoic and Mesozoic 52
 passive, N–S boundary zone, Iceland 151–2
 reduction in 417
tectonic compensation 431
 tectonic movement, regional 381
tectonic trend, Iceland, change in 151–2
tectonism 430
 compressional 138, 141
 extensional 325
 NE Atlantic margin 421
 related to igneous activity 325
 Rockall Trough 325
tensile stress 439
 tension 10–11, 248
 Davis Strait area 431
 localized zones 386
 zones of
 migrating 386
 preferential magma flow 386
 tensional stress 27, 385, 430
 reduction of 439
tephra, reworked 255
tephra layers, acidic 153
Tertiary Igneous Province of NW Scotland–N Ireland–Faeroes–Greenland 3, 10–11
Tertiary tectonics, NW Europe 28, 29
Th enrichment 71–2
Thanet Base Bed, Kent 260
Thanet normal polarity zone 408
Thanet sands, Kent 376, 408, 409
thermal and pressure anomalies, N Atlantic and Greenland 21
thermal anomalies, N Atlantic, influence on plate evolution 21
upper mantle 22
thermal boundary layer 16, 21
thermal conduction 16
thermal decay 330
thermal equilibration 7, 45
<table>
<thead>
<tr>
<th>thermal gradients</th>
<th>45, 46</th>
</tr>
</thead>
<tbody>
<tr>
<td>thermal metamorphism</td>
<td>241, 256, 370, 375</td>
</tr>
<tr>
<td>thermal subsidence</td>
<td>54, 121, 291</td>
</tr>
<tr>
<td>thermal thinning</td>
<td>330</td>
</tr>
<tr>
<td>tholeiite</td>
<td>70, 125, 163, 339, 447</td>
</tr>
<tr>
<td>depleted</td>
<td>278</td>
</tr>
<tr>
<td>Faeroe Islands</td>
<td>230</td>
</tr>
<tr>
<td>Fe-Ti</td>
<td>413</td>
</tr>
<tr>
<td>high Fe-Ti</td>
<td>280</td>
</tr>
<tr>
<td>high-Ti</td>
<td>233</td>
</tr>
<tr>
<td>low alkali</td>
<td>299</td>
</tr>
<tr>
<td>low-and high-Ti</td>
<td>438, 439</td>
</tr>
<tr>
<td>Mg-poor</td>
<td>433, Mg-rich, W Greenland 432-3</td>
</tr>
<tr>
<td>N-MORB type</td>
<td>443</td>
</tr>
<tr>
<td>oceanic</td>
<td>130</td>
</tr>
<tr>
<td>olivine</td>
<td>233, 245, 296, 305, 442, 446</td>
</tr>
<tr>
<td>low-Ti</td>
<td>233</td>
</tr>
<tr>
<td>picritic</td>
<td>433</td>
</tr>
<tr>
<td>Ti-poor</td>
<td>442</td>
</tr>
<tr>
<td>thomsonite</td>
<td>295, 296, 299</td>
</tr>
<tr>
<td>Thulean Volcanic Province</td>
<td>429</td>
</tr>
<tr>
<td>Ti-augite</td>
<td>411</td>
</tr>
<tr>
<td>Ti-magnetite</td>
<td>124, 128</td>
</tr>
<tr>
<td>titanomagnetite</td>
<td>257, 274, 278, 296, 299, 300</td>
</tr>
<tr>
<td>low-and high-Ti</td>
<td>216</td>
</tr>
<tr>
<td>topographic inversion</td>
<td>5</td>
</tr>
<tr>
<td>topographic swell, N Atlantic</td>
<td>16-17</td>
</tr>
<tr>
<td>topography, influence on anomaly field</td>
<td>148</td>
</tr>
<tr>
<td>Tow Valley Fault</td>
<td>386, 388</td>
</tr>
<tr>
<td>trace element enrichment pattern</td>
<td>Lower Series and tholeiitic dykes, Voring Plateau 76, 79</td>
</tr>
<tr>
<td>stratichemical units, Upper Series, Voring Plateau</td>
<td>73</td>
</tr>
<tr>
<td>trace element patterns, Lower Series lavas, Voring Plateau 79-80</td>
<td></td>
</tr>
<tr>
<td>trace elements, olivine tholeiite</td>
<td>276</td>
</tr>
<tr>
<td>trachybasalt</td>
<td>432</td>
</tr>
<tr>
<td>trachyte</td>
<td>342, 368, 432</td>
</tr>
<tr>
<td>biotite</td>
<td>372</td>
</tr>
<tr>
<td>silicified</td>
<td>366</td>
</tr>
<tr>
<td>Trail1121</td>
<td></td>
</tr>
<tr>
<td>central intrusive complexes</td>
<td>436</td>
</tr>
<tr>
<td>sills</td>
<td>435</td>
</tr>
<tr>
<td>transgressive/regressive cycles, North Sea</td>
<td>407</td>
</tr>
<tr>
<td>transgression</td>
<td>136, 144</td>
</tr>
<tr>
<td>Spitsbergen Fold and Thrust Belt</td>
<td>144</td>
</tr>
<tr>
<td>transtension</td>
<td>136</td>
</tr>
<tr>
<td>dextral</td>
<td>387</td>
</tr>
<tr>
<td>troctolite</td>
<td>391</td>
</tr>
<tr>
<td>Trolleland fault zone</td>
<td>144</td>
</tr>
<tr>
<td>Troms–Finmark Platform</td>
<td>421</td>
</tr>
<tr>
<td>Tromsø Basin</td>
<td>135, 141, 144</td>
</tr>
<tr>
<td>extensional</td>
<td>421</td>
</tr>
<tr>
<td>thickening sedimentary sequence</td>
<td>141</td>
</tr>
<tr>
<td>tuff marker</td>
<td>143</td>
</tr>
<tr>
<td>Trondelag Platform</td>
<td>52</td>
</tr>
<tr>
<td>tuff</td>
<td>144, 227, 235, 260, 287, 291, 316, 366, 373, 376, 412, 432, 434</td>
</tr>
<tr>
<td>air-fall</td>
<td>125</td>
</tr>
<tr>
<td>ashflow</td>
<td>367, 372</td>
</tr>
<tr>
<td>Balder Formation</td>
<td>280</td>
</tr>
<tr>
<td>basaltic</td>
<td>124, 368</td>
</tr>
<tr>
<td>basic</td>
<td>254</td>
</tr>
<tr>
<td>petrography of</td>
<td>255</td>
</tr>
<tr>
<td>basic ashfall, K-Ar whole-rock dating</td>
<td>259</td>
</tr>
<tr>
<td>Danian sediments</td>
<td>431</td>
</tr>
<tr>
<td>intrusive</td>
<td>369</td>
</tr>
<tr>
<td>lapilli-tuff</td>
<td>369, 370</td>
</tr>
<tr>
<td>lithic and crystal</td>
<td>369, 370</td>
</tr>
<tr>
<td>nephelinitic</td>
<td>438</td>
</tr>
<tr>
<td>North Sea</td>
<td>25</td>
</tr>
<tr>
<td>primary</td>
<td>255</td>
</tr>
<tr>
<td>pyroclastic, early Eocene</td>
<td>271</td>
</tr>
<tr>
<td>pyroclastic airfall</td>
<td>312</td>
</tr>
<tr>
<td>rhyolitic</td>
<td>373</td>
</tr>
<tr>
<td>silicic</td>
<td>367, 372, 373, 376</td>
</tr>
<tr>
<td>silicic airfall</td>
<td>367</td>
</tr>
<tr>
<td>tholeiitic, high Ti</td>
<td>265</td>
</tr>
<tr>
<td>trachytic</td>
<td>373</td>
</tr>
<tr>
<td>vitric, basaltic</td>
<td>65</td>
</tr>
<tr>
<td>vitroclastic</td>
<td>124</td>
</tr>
<tr>
<td>water-lain</td>
<td>161</td>
</tr>
<tr>
<td>welded</td>
<td>370, 373</td>
</tr>
<tr>
<td>west of Shetland Islands</td>
<td>263</td>
</tr>
<tr>
<td>tuff-agglomerate zone, Faeroe Islands</td>
<td>229–30, 442</td>
</tr>
<tr>
<td>correlated with Balder Formation</td>
<td>266–7</td>
</tr>
<tr>
<td>local facies, Vestmanna Member</td>
<td>27</td>
</tr>
<tr>
<td>tuff beds</td>
<td>69, 128</td>
</tr>
<tr>
<td>Upper Series, Voring Plateau</td>
<td>76–8</td>
</tr>
<tr>
<td>tuff marker</td>
<td>143</td>
</tr>
<tr>
<td>tuffsite</td>
<td>369, 371, 373, 375</td>
</tr>
<tr>
<td>U-depletion</td>
<td>128, 129, 130</td>
</tr>
<tr>
<td>Ubekendt Ejland</td>
<td>432</td>
</tr>
<tr>
<td>lamprophyres</td>
<td>434</td>
</tr>
<tr>
<td>unconformities</td>
<td>141, 315, 322, 430, 438</td>
</tr>
<tr>
<td>angular</td>
<td></td>
</tr>
<tr>
<td>basin margin</td>
<td>272, 273</td>
</tr>
<tr>
<td>Oligocene</td>
<td>141</td>
</tr>
<tr>
<td>Austrian</td>
<td>325</td>
</tr>
<tr>
<td>Cretaceous, basal</td>
<td>317</td>
</tr>
<tr>
<td>late Kimmerian</td>
<td>309, 317, 321</td>
</tr>
<tr>
<td>doming of</td>
<td>320</td>
</tr>
<tr>
<td>syn-rift</td>
<td>330</td>
</tr>
<tr>
<td>late Kimmeridgian</td>
<td>312</td>
</tr>
<tr>
<td>Oligocene, basal</td>
<td>331</td>
</tr>
<tr>
<td>underplating</td>
<td>44, 130</td>
</tr>
<tr>
<td>by upper mantle partial melts</td>
<td>38</td>
</tr>
<tr>
<td>continental</td>
<td>441</td>
</tr>
<tr>
<td>crustal</td>
<td>386</td>
</tr>
<tr>
<td>Jurassic</td>
<td>45</td>
</tr>
<tr>
<td>uplift</td>
<td>141, 386, 422</td>
</tr>
<tr>
<td>Campanian</td>
<td>119</td>
</tr>
<tr>
<td>domal</td>
<td>441</td>
</tr>
<tr>
<td>and mantle hot-spots</td>
<td>10</td>
</tr>
<tr>
<td>mid-Kimmerian</td>
<td>325</td>
</tr>
<tr>
<td>post-separation</td>
<td>441</td>
</tr>
<tr>
<td>regional</td>
<td>386, 441</td>
</tr>
<tr>
<td>Upper Basalt Formation, Antrim</td>
<td>278, 306, 344, 373, 446</td>
</tr>
<tr>
<td>Upper Basalt Formation, Faeroe Islands</td>
<td>119, 227, 228–9, 261</td>
</tr>
<tr>
<td>E and SW Shelf</td>
<td>229</td>
</tr>
<tr>
<td>upper mantle flow</td>
<td>19</td>
</tr>
</tbody>
</table>
Index

North Sea, two phases of explosive volcanism 417
volcanoclastics 123, 124, 323
NE Porcupine Basin 322, 325
volcanics
acid, Tardree 343
intermediate
continental affinities, western Voring Plateau 59
Voring Plateau 65
rhyolite 255
volcanism
active 386
alkaline, inland 441
along line of active rifting 200
axial, increase in 330
basaltic 280, 431
basic, rifting-related, Torridonian 130
basinal 330
British 414–16
British Tertiary Volcanic Province, commencement of 430
Cainozoic 137, 141
Cape Verde Rise 8
central type 415
cessation of, British Tertiary Volcanic Province 417
continental 111
continental-rift margin 7
Cretaceous 429–30
Danian 315–16
ey early Tertiary 49, 225, 447
continental 16, 20
N Atlantic 3–11
North Sea Basin 407–18
western Barents Sea margin 135–45
E Greenland 266
Eocene extrusive 50
explosive 260, 365, 366, 372, 373, 376, 413, 414
adjacent to North Sea Basin 414
increase of in Iceland 153
extrusive, Skye 366
Faeroe Islands 235, 261
ey early termination of 236
switch to Greenland 235
Faeroes region, evidence for 263–8
fissure 439, 446
Hebridean, and ash deposition 445
high-Ti type 235
intraplate, E Greenland 157–8
Jurassic 320
major regional 255
marginal 147
mid Tertiary 145
model for lateral shift 235
N Atlantic 416–17
NE Atlantic 173
Palaeogene: sedimentary record in Denmark 395–403
rift-related 235
Rockall, western 132
silicic pyroclastic 377
subaerial 111
submarine 110
syn-rift 3
Tertiary, Kangerdlugssuaq region 161–77

Upper Plateau Basalts, E Greenland 201
Scoresby Sund 203
Upper Plateau lavas, E Greenland 435–6
Upper Series, Voring Plateau 51, 59, 65–6, 443
basal reflector 65
lithology and petrography 69–76
comparison with NE Atlantic magmatic provinces 75–6
petrology of the tholeiitic basalts 70–5
sediments 76–8
Upper Series basalts, Faeroe Islands 218, 222, 247, 302–3, 441, 442
upwelling, passive 53
Uttental Plateau, THOL-2 dyke swarms 165

Vágar, Faeroe Islands 227
Vandfaldsdalen Formation 163, 183, 186, 192, 193, 203, 266
isotope geochemistry of the lavas 186–7
isotopic trends 186
tholeiite 268
velocity discontinuities, upper crust 38, 40
velocity structure
dipping reflectors, E Greenland 105–10
upper crustal 108, 110
vent infill 365, 366, 372, 374
vents, retreating 5
vertical movement, Bjørnøya marginal high 137
vesiculation 375
Vestmanna drill-hole 227
Vestmanna Member 227, 230
Vidoy, Faeroe Islands 228
Vidoy Member 227, 230
Viking Graben 388
sedimentation rate 402, 403
viscosity, in the mantle 16
viscous drag 376
volatile release 369
volcanic centres 230
explosive 10
volcanic complexes, Iceland 150–1, 151–2
volcanic debris 255
volcanic glass 397, 408
volcanic margins, N Atlantic 3
volcanic markers
Jan Mayen Ridge (reflector F) 85, 92
possible interpretations 90–1
volcanic peaks (Bjørnøya marginal high) 137, 141
volcanic productivity rate 104
volcanic provinces, Jan Mayen Ridge 87, 90–1
volcanic source
seaward migration of 102
up-dip or down-dip 102–3
volcanic vents 375
volcanic zone 148
volcanoclastic debris, reworked 253
volcanoclastic flows, Voring Plateau 65
volcanoclastic sand
basaltic 409
Moray Firth 415
volcanoclastic sediments
early Palaeogene, distribution of in NW Europe 410

tholeiite basalt 434
Thulean 253
volcanoes
 central 431, 439, 440, 443
 central-vent 435, 447
 fissure 320, 430, 434, 437
 nephelinitic 441
 Skagerrak 400
Vøring Basin 52
sill intrusion 248
Vøring passive margin 6–7
 early Cainozoic evolution 53–4
Vøring Plateau 4–5, 49, 95, 307, 448
and conjugate Greenland margin 38, 40
 correlation with NE Greenland plateau basalts 80–1
dipping reflectors, MORB-type basalt 132
divergent-arcuate reflectors 58–9, 61, 62, 65–6
igneous activity 442–3
and landward Norwegian margin, structure of 37
models for dipping reflectors 52–4
origin of Palaeogene volcanic sequence 69–81
 Lower Series lavas, lithology and petrography 78–80
 Upper Series lavas, lithology and petrography 69–76
 Upper Series sediments 76–8
underlain by upper continental crust basement 80
Vøring Plateau continental margin 49
Vøring Plateau Escarpment 5, 35
Vøring Plateau lavas, chemical affinities of 75–6
Vøring Plateau marginal high 51, 135, 443
Vøring sedimentary basin 49

wairakite 257
weathering
 deep, of silicic rocks 373
 lateritic 446

Werner Bjerge central intrusive complex 210, 436
Wessx Basin, inversion structures 29
West Netherlands Basin 29
West Spitsbergen Fold Belt 421
orogenesis and deformation 422
Western Barents Sea Basin, rifted 421
Western Red Hills, Skye 260, 342, 346, 368
 emplacement of granites 415–16
Wetzeliea astra zone 400
Wetzeliea hyperacantha zone 266
Wetzeliea meckelfeldensis zone 400
Widemann Fjord, E Greenland 203, 205
Wilson Cycles 27
Wolf Rock–Epsom Shoal igneous association 325
Wollaston Forland 81, 434
wrench tectonics, Svalbard–Barents Shelf and NE
 Greenland 144
Wyville-Thomson Ridge 116, 229, 271, 283, 289
 sediments 272

xenoliths 375
basalt 205, 210
gabbro 210
mantle 192, 447

Ymir Ridge 229, 283, 289

zeolite cement 255, 259
zeolites 77, 125, 163, 165, 257, 278, 301, 403
 heulandite-clinoptilolite type 397
 zoning 165
Zuider Zee depression, aseismic 29