Sediment-Body Geometry and Heterogeneity: Analogue Studies for Modelling the Subsurface
The Geological Society of London

Books Editorial Committee

Chief Editor
Rick Law (USA)

Society Books Editors
Jim Griffiths (UK)
Dave Hodgson (UK)
Howard Johnson (UK)
Phil Leat (UK)
Daniela Schmidt (UK)
Randell Stephenson (UK)
Rob Strachan (UK)
Mark Whiteman (UK)

Society Books Advisors
Ghulam Bhat (India)
Marie-Françoise Brunet (France)
Maarten de Wit (South Africa)
James Goff (Australia)
Mario Parise (Italy)
Satish-Kumar (Japan)
Marco Vecoli (Saudi Arabia)
Gonzalo Veiga (Argentina)

Geological Society books refereeing procedures

The Society makes every effort to ensure that the scientific and production quality of its books matches that of its journals. Since 1997, all book proposals have been refereed by specialist reviewers as well as by the Society’s Books Editorial Committee. If the referees identify weaknesses in the proposal, these must be addressed before the proposal is accepted.

Once the book is accepted, the Society Book Editors ensure that the volume editors follow strict guidelines on refereeing and quality control. We insist that individual papers can only be accepted after satisfactory review by two independent referees. The questions on the review forms are similar to those for Journal of the Geological Society. The referees’ forms and comments must be available to the Society’s Book Editors on request.

Although many of the books result from meetings, the editors are expected to commission papers that were not presented at the meeting to ensure that the book provides a balanced coverage of the subject. Being accepted for presentation at the meeting does not guarantee inclusion in the book.

More information about submitting a proposal and producing a book for the Society can be found on its website: www.geolsoc.org.uk.

It is recommended that reference to all or part of this book should be made in one of the following ways:


Sediment-Body Geometry and Heterogeneity: Analogue Studies for Modelling the Subsurface

EDITED BY

A. W. MARTINIUS
Statoil RDI, Norway

J. A. HOWELL
University of Aberdeen, UK

and

T. R. GOOD
ExxonMobil International Ltd, UK
The Geological Society of London (GSL) was founded in 1807. It is the oldest national geological society in the world and the largest in Europe. It was incorporated under Royal Charter in 1825 and is Registered Charity 210161.

The Society is the UK national learned and professional society for geology with a worldwide Fellowship (FGS) of over 10,000. The Society has the power to confer Chartered status on suitably qualified Fellows, and about 2000 of the Fellowship carry the title (CGeol). Chartered Geologists may also obtain the equivalent European title, European Geologist (EurGeol). One fifth of the Society’s fellowship resides outside the UK. To find out more about the Society, log on to www.geolsoc.org.uk.

The Geological Society Publishing House (Bath, UK) produces the Society’s international journals and books, and acts as European distributor for selected publications of the American Association of Petroleum Geologists (AAPG), the Indonesian Petroleum Association (IPA), the Geological Society of America (GSA), the Society for Sedimentary Geology (SEPM) and the Geologists’ Association (GA). Joint marketing agreements ensure that GSL Fellows may purchase these societies’ publications at a discount. The Society’s online bookshop (accessible from www.geolsoc.org.uk) offers secure book purchasing with your credit or debit card.

To find out about joining the Society and benefiting from substantial discounts on publications of GSL and other societies worldwide, consult www.geolsoc.org.uk, or contact the Fellowship Department at: The Geological Society, Burlington House, Piccadilly, London W1J 0BP; Tel. +44 (0)20 7434 9944; Fax +44 (0)20 7439 8975; E-mail: enquiries@geolsoc.org.uk.

For information about the Society’s meetings, consult Events on www.geolsoc.org.uk. To find out more about the Society’s Corporate Affiliates Scheme, write to enquiries@geolsoc.org.uk.
Preface

Over the past 20 years there has been a major growth in efforts to quantify the geometry and dimensions of sediment bodies from analogues to provide quantitative input to geological models. The aim of this Special Publication is to examine the current state of the art, from both industry and academic perspectives. Contributions discuss both the challenges of extracting relevant data from different types of sedimentary analogue (outcrop, process models, seismic) and the application and significance of such information for improving predictions from subsurface static and dynamic models. Special attention is given to modelling reservoir properties and gridding issues for predicting subsurface fluid flow. As such, the volume is expected to be of interest to both the geoscience community concerned with the fundamentals of sedimentary architecture as well as geological modellers and engineers interested in how these characteristics are modelled and influence subsurface predictions.

This volume covers a number of themes:

- analogue analysis techniques, including outcrop, flume tank studies, seismic studies and data analysis;
- analogue studies from a wide range of depositional environments;
- application of analogues via geological models to reduce subsurface uncertainties;
- new geological modelling methods, such as process-based and hybrid process, and geostatistical methods.

An important message of this collection of papers is that static and dynamic models of (an) appropriate outcrop analogue(s) are used extensively in subsurface reservoir studies and provide crucial information for the understanding and prediction of flow behaviour. It is shown that describing and modelling sedimentary heterogeneity at carefully selected scale(s) in outcrop or reservoir, and by using flow-based local upscaling methods, the resulting porosity and permeability distribution at the reservoir and simulation model scales (the effective permeability architecture) is significantly different from the well scale. Further refinement and enhancement of these static and/or dynamic subsurface models is achieved and documented in this volume by using one or a combination of additional datasets and/or techniques, such as modern analogue data, LiDAR data, seismic modelling, a surface-based approach to model construction, or process-based forward-modelling.

We are sincerely indebted to the authors who have contributed to the volume and to the reviewers whose comments and insight invariably and significantly improved the quality and presentation format of the papers. Without the expertise, dedication and efforts of the reviewers this volume would not have been published. Finally, we thank the staff of the Geological Society, in particular Angharad Hills, Tamzin Anderson and Jo Armstrong, for their quality assurance, prompt technical assistance and patience.

The reviewers are (with, in addition, anonymous reviewers):

- David Alsop
- Mark Bentley
- Oriol Falivene
- Lars-Magnus Fält
- David Garner
- David Hodgetts
- Dave Hodgson
- Matthew Jackson
- David Keighley
- Kevin Keogh
- Richard Labourdette
- Oddvar Lia
- Alister MacDonald
- Ivar Midtkandal
- Nigel Mountney
- Gary Nichols
- Colin North
- Roger Slatt
- Karl Stephen
- Joep Storms
- Mark Tomasso

A. W. Martinius
J. A. Howell
T. R. Good