ABAQUS model 173–181
Amazon Fan DDWFTB geometry 173, 174
Aguacaliente fault, Costa Rica 19
Coulomb static stress transfer 25, 26
Coulomb stress and kinematics 28, 29
Akatore Fault, New Zealand 12
Alajuela Fault, Costa Rica
Coulomb static stress transfer 25–26
Coulomb stress and kinematics 29–32
Alpine Fault, New Zealand 7, 8, 9
stress trajectories 10
Amazon Fan DDWFTB
ABAQUS model 173, 174, 179–180
critical taper wedge theory 180
Anderson, Ernest Masson (1877–1960), structure of faults and fractures 1–2, 215
Andersonian faulting 1–2, 13
crack patterns 203, 204, 205, 206, 207
anisotropic poroelasticity 210, 212
pore pressure/stress coupling 206–209
normal 1
strike-slip 1
strike patterns 203, 204, 209, 210, 212
reactivation 13–14
thrust 1, 39–42, 46, 48, 155
initiation 39–40
reactivation 40–42
wrench 1, 155
Darfield earthquake 7–16
initiation 13
stress controls 13–15
Western Tottori earthquake 14–15, 16
Anglesea-1 well 95, 97
Anisclo anticline 132, 137
anisotropy
mechanical, foliated rocks 191, 192, 193, 194–195
pore pressure/stress coupling 204–205
poroelasticity 204–205
pore pressure/stress coupling 205–209
anticlines
inversion, Otway Basin 93, 94, 95, 97
thrust-related 131–139
Ardenne–Eifel sedimentary basin, Variscan Orogeny 54–57, 66
Arran, magmatic intrusion 123, 125
Australia, southern margin
in situ stress fields 93
uplift and deformation 91–108
Austroalpine Basement 190–191

Balliang 1977 earthquake 93, 99, 100
Balupor fault system 134
Bam 2003 earthquake, dilatant strain 222
Banks Peninsula 9, 10
Baram Delta 172, 174, 179
Berea sandstone, elastic properties 202, 203
Bight Basin 72
fault reactivation risk 81, 87
phases 73, 74
regional stress regime 81, 82, 85
stratigraphy 71, 73–75
Biot coefficient 204–205
Blue Whale supersequence 71, 73, 74
Boltaña anticline
compressional assemblage 137
décollements 137
deformation pattern 132–137
cross-cutting 136–137, 138
orientation 132–134
structural interpretation 134, 135, 136
extensional assemblage 137–138
geological framework 131–132
joints and veins 133, 134, 137–138
stress field fluctuation 138–139
borehole breakouts 160
Bight Basin 81
Otway Basin 93
and stress orientation
Galleon-1 well 10, 12
Gulf of Mexico 143–145, 149–151
Nile Delta 158–159, 161
Brenner Fault Zone 188, 189
Brenner Line LANF 188, 189
brittle fabrics 202–204
brittle failure
shear 39–40
reverse faults 46
tectonic inversion 52–53, 66–67
brittle faults 186–191, 194–195
Brenner Line LANF 188
Simplon Line LANF 188
Sprechenstein–Mules Fault Zone 191
Bull Vein, reverse fault 47
Byerlee law 185, 195
Campanian–Maastrichtian, Ceduna Sub-basin
inversion 76, 79
Canterbury Plains
Darfield earthquake 7, 9
stress field 12–13
strain rate 12
Caribbean Plate 19–20
Carmel Head Thrust 48
Cartago City earthquakes 25
cataclasite
 Brenner Fault Zone 188, 189
 Simplon Fault Zone 186, 188
Ceduna Sub-basin 71–87, 72
 fault orientation analysis 79–80
 fault reactivation 81, 83–87
 geomechanical stress analysis 83–85
 inversion 76, 78–79
 hydrocarbon traps 79
 reactivation risk 85–87
 regional structure 75, 76, 77–78
 stratigraphy 74–75
Ceduna Terrace 71, 72, 73
Central Costa Rica Deformed Belt 20–35
centroid moment tensor focal mechanism 42
Chamoli 1991 earthquake 42
Chelungpu Fault 42
Chi-Chi 1999 thrust rupture 42
Christchurch, New Zealand, Darfield 2010 earthquake 7–10
Cinchona 2009 earthquake 29, 31, 32
Clashach sandstone 220, 227
Cocos–Caribbean plate convergence 19–20, 26, 27, 32
Colac Trough, Neogene exhumation 94, 95, 96, 97
cone-sheets 111
convection, mantle, Otway Basin 107
Costa Rica
 Coulomb static stress transfer 24–26
 Coulomb stress and kinematics 28–32
 seismicity 19
 slip tendency behaviour 32, 35
 stress fields 21–22, 26–27
 stress patterns 27–28
 tectonic setting 19–21
 volcanism 20
Coulomb failure stress 24–25
Coulomb static stress transfer, Costa Rica 24–26
Coulomb stress and kinematics, Costa Rica 28–32
Coulomb wedge 39, 42
 analysis 43, 47, 49
cracks
 and elastic properties of rock 205
 misoriented 208
 patterns 202–204, 205, 207
 fracture susceptibility 210, 212
 pore pressure/stress coupling 206–209
 pore-fluid pressure 201, 202
critical taper wedge theory 171, 180–181
 cross-cutting, Boltaña anticline 136–137, 138
Darfield 2010 earthquake 2, 7–10
 aftershocks 8, 10, 15
 Andersonian wrench faulting 7–16
 and regional stress 12–13, 15
 seismic characteristics 8
délécollements 39
 Boltaña anticline 137
deformation
 aseismic, Otway Basin 104–105
 bedrock, effect of pore-fluid pressure 117, 122–123, 127
 Boltaña anticline 132–137
 orientation analysis 132–134
 structural interpretation 134, 136
 and folding 134, 136
 Neogene, Otway Basin 91, 93–98, 105–108
 strain rate 101–103
delta systems
 Nile Delta 164–168
 stress and faulting 163–164
delta-deepwater fold-thrust belts (DDWFTBs)
 Ceduna Sub-basin 71, 72, 74, 75, 76, 77–78
 fault orientation analysis 79–80
 sediment wedge movement 171–173
 ABAQUS modelling 173–181
 Gulf of Mexico 142–151
 hydrocarbons 75, 79
 stress regimes 141–142
 structural geometry 75
detachments
 delta-deepwater fold-thrust belts
 sediment wedge movement 171–173
 ABAQUS modelling 173–181
 stress 3
diffusion see dilatancy-diffusion hypothesis
dilatancy
 and pore-fluid pressure 217–219
 suction pump 219–220
dilatancy-diffusion hypothesis 215, 217–228
 upscaling 215, 223–228
 complexity and predictability 222–223
 in space 223–226
 in time 226
dilatant strain 221–222
dipmeter logs
 Galleon-1 borehole 10
 Gulf of Mexico 144–145
 Nile Delta 158
drilling-induced tensile fractures 160
 Gulf of Mexico 143–145, 149–150
 Nile Delta 158–159, 161
 Otway Basin 93
Dugong supersequence 73, 75
Dunstan Fault, New Zealand 12
dykes
 and magma chamber overpressure 119, 123–125, 127
 work of Anderson 2
 see also ring-dykes
earthquakes
 nucleation and Andersonian model 2
 Otway Basin 98–99
precursors 215–216, 220–221
prediction, dilatancy-diffusion hypothesis 222–223
reverse-slip dip compilation 42–44
Effective Medium Theory 205
elasto-plasticity 111, 118, 127
Eratosthenes Seamount, gravity-gliding 164, 165, 167
Escazu Fault, Costa Rica
Coulomb static stress transfer 25
Coulomb stress and kinematics 28–29, 30
Eumerella Formation 104, 105
Europa, Andersonian-type structures 2
evaporites, Nile Delta 156–168
exhumation, Otway Basin 95, 96, 97, 107–108
strain rate 101–103, 105–107
extension fractures 51
Eyre Sub-basin 72, 73
fabric tensors, porous rock 203
Fault Analysis Seal Technology 81
faulting
Bolțașa anticline 133–134, 135, 136–137
magma chamber overpressure 121, 122
non-Andersonian 3, 4, 155–156, 185–186
Nile Delta 164–168
normal
Andersonian 203, 204, 209, 210, 212
low-angle non-Andersonian 3, 155–156, 166, 185
Brenner Line 188
Simplon Line 186–188
work of Anderson 1
reverse
Otway Basin 99, 107
Port Campbell Limestone 98
reverse-slip
Darfield 2010 earthquake 8, 15
dip compilation 42–44, 48
mineralized 47, 48
misorientation 45, 48, 185–186
non-optimal 44–47
pore-fluid overpressuring 47–48
optimal 44–47
rupturing 40–49
strike-slip
Andersonian, crack patterns 203, 205, 210, 212
Greendale Fault 7–8, 14, 15, 16
highly oblique non-Andersonian 155–156
large-displacement and stress 15
reactivation 13–14
work of Anderson 1
see also faulting, wrench, Andersonian
thrust
Andersonian 39–42, 46, 48
‘staircase systems’ 43, 45, 48
work of Anderson 1
wrench
Andersonian
Darfield earthquake 7–16
initiation 13
stress controls 13–15
Western Tottori earthquake 14–15, 16
work of Anderson 1
see also misorientation; reactivation
faults
brittle 186–191, 194–195
mineralization 47
misoriented 185–186
orientation analysis, Ceduna Sub-basin 79–80
reactivation
Bight Basin, risk 81
Ceduna Sub-basin 81, 83–85
risk 85–87
weakness 185–186, 194–195
work of Anderson 1–2
Flinders Ranges 100, 104, 106, 107
Flinn plot, modified 203, 207
fluid overpressure see pore-fluid overpressure
focal mechanisms
centroid moment tensor 42
Costa Rica stress fields 21–22
stress inversion, South Island, New Zealand 8, 10, 13
fold-thrust belts 39
see also delta-deepwater fold-thrust belts
folding, and deformation patterns 134, 136
foliation
anisotropic slip tendency analysis 192–194
Brenner Fault Zone 188, 189
mechanical anisotropy 191, 192, 193, 194–195
Simplon Fault Zone mylonites 186, 187
Sprechenstein–Mules Fault Zone 190, 191
as weakening mechanism 186
footwall
Brenner Line 188
DDWFTBs 75
Simplon Fault Zone 186, 188
Sprechenstein–Mules Fault Zone 191
formation micro-imaging 145, 159
formation micro-scanning 145
fracture susceptibility, and anisotropic poroelasticity 209–211
fractures
compressional tectonic inversion 63–65
curved 4
extension 51
polymodal 4
friction, coefficient of 175–176, 178, 179–180
Galleon-1 borehole breakout 10–11, 12
Gavarnie thrust sheet 131, 132
Gawler Craton 72, 74
Glen Rosa, Arran, magmatic intrusion 123, 125
Glockner Nappe 188
INDEX

Gnarlyknots-1 well 71, 72
gravity anomalies, Otway Basin 107
gavity-gliding, Nile Delta 164, 167
Great Sumatra Fault 155
Greendale Fault, New Zealand 7–8, 14, 15, 16
Gulf of Mexico
delta-deepwater fold-thrust belts 142–151
gological setting 142–143
stratigraphy 143
stress deflections
salt diapirs 146–148, 150–151
numerical modelling 148–149
analysis, petroleum wells 145–146, 149–150
borehole breakouts 143–145, 149–150
Gutenberg–Richter Law 217, 219, 221, 222
Hammerhead DDWFTB 71, 73, 74–75, 76, 77–79
hanging wall
Brenner Line 188
Ceduna Sub-basin 78
DDWFTBs 75
Simplon Fault Zone 186, 188
Sprechenstein–Mules Fault Zone 191
High-Ardenne Slate Belt
gological setting 53–54
palaeostress analysis 57
vein sets 52, 54–57
Hikurangi Margin, strain rates 12
Himalaya, thrust fault rupture 42–43
Honshu, NE inversion province
fluid overpressure 48
reverse fault rupture 43, 44, 49
Hope Fault, New Zealand 7, 9
hydrocarbon fields
pore-pressure/stress coupling 206
upscale permeabilities 223–226
hydrocarbon prospectivity, Ceduna Sub-basin 71, 79
hydrocarbon traps
delta-deepwater fold-thrust belts 75
Ceduna Sub-basin 79
reactivation risk 85–87
Otway Basin 93, 95
Indo-Australian plate 92, 93
intrusion, dyke
magma chamber overpressure 123–125, 127
work of Anderson 2
inversion 39
Ceduna Sub-basin 76, 78–79
compressional tectonic 44, 45, 48, 49, 51
3D reconstructions 57–67
BFM plots 52–53
horizontal stress component 58
stress-state evolution 53–67
vein sets, High-Ardenne Slate Belt 54–57
inversion anticlines, Otway Basin 93, 94, 95, 97
Irazú volcano 28
Izmit 1999 earthquake, dilatancy-diffusion hypothesis 222
Jaris fault 29, 31
Jerboa-1 well 71, 72
Kashmir 2005 earthquake 42, 48
Lake Ellesmere 9, 10
L’Aquila 2009 earthquake, precursors 216, 221, 223
Law of Effective Stress 201–202, 204–205, 207, 210
leak-off pressure testing 93
Liachar Thrust, brittle faults 195
Locharbriggs sandstone 227
Louann Salt 142–143
stress regime 148–149, 150
Lower Penninic Nappes 186, 187
magma, eruption, and magmatic pressure 119
magma chambers
overpressure and bedrock failure 111–127
dyke intrusion 119, 123–125, 127
engineering mechanics solutions 115–117
failure geometry 126–127
fault connection 121, 122
numerical modelling 117–119, 120, 123
pore-fluid pressure 117, 122–123, 124
rheology 119
secondary chamber 122, 126
shear failure 113–115
chamber wall 120–122, 123, 127
structures 123–124, 125
tensile failure
classical solution 112–113
Grosfils’ solution 113
surface development 119–120, 121, 123, 127
Main Himalayan Thrust 42
Marlborough fault system, stress trajectories 10
Merapi volcano, magmatic pressure 119
Messinian evaporites 156, 157–158, 157
and stress orientation 161–163, 165
Mexican Ridges Fold Belt 143
microcracks 202–203
Middle America Trench 19
mineralization 47, 48
Miocene–Pliocene, southern Australian margin 2, 91–108
misorientation 185–186
reverse faults 45, 46, 48
Mohr–Coulomb diagrams 51–52, 60, 62, 63, 64, 65
cracks and pore-fluid pressure 208, 210, 211
Mohr–Coulomb failure, anisotropic foliated rock
191, 192
Montsec thrust 131, 132
Mules Tonalitic Lamella 190–191
Mulgara fault system 77–78
reactivation 74, 78–79
mylonites, phyllosilicate 196
Brenner Fault Zone 188, 189
mechanical anisotropy 191, 192, 193, 194–195
Simplon Fault Zone 186–188, 196
Sprechenstein–Mules Fault Zone 189–191

Nazca Plate 19, 20
Neogene, deformation, exhumation and uplift,
Otway Basin 91, 93–98, 101–108
Nerita-1 well 93, 95, 96
New Zealand, South Island
compressional inversion 44
Darfield earthquake 7–10
and regional stress 15
regional stress 8, 10–13
strain rate 11–12
Nile Delta
geological setting 156–158
gravity-gliding 164, 167
stress orientation 158–159
present-day 159, 161–163
Messinian evaporites 161–163
non-Andersonian faulting 164–168
non-Andersonian faulting 155–156, 185–186
supra-salt, Nile Delta 164–168
North Eifel, Variscan Orogeny 54, 55, 57

Ossola–Tessin tectonic window 186, 187
Ostler Fault, New Zealand 12
Otway Basin
in situ stress fields 93
inversion anticlines 93, 94, 95
Neogene deformation, exhumation and uplift 91,
93–98
strain rate 101–103, 105–108
present-day seismic strain rate 99–101
and geological evidence 103–104
reverse faulting 98, 99
seismicity 98–99
Otway Ranges 94, 97
Outer Hebrides Thrust Zone 40
overpressure
magma chambers 111–127
and non-Andersonian faulting 166
non-optimal reverse faults 47–48
and shear failure 113–115
tectonic inversions 53
High-Ardenne Slate Belt 55
and tensile failure 113

Pacific–Australia plate boundary 7, 8
Padthaway Ridge, uplift 106, 107

palaestress indicators 42, 51
High-Ardenne Slate Belt 57
South Island New Zealand 12
Panamá microplate 20
Parovoz finite-differences code 117–118, 123
Perdido Fold Belt 143
Periadiatric fault system 189–190
petroleum wells, and stress orientation analysis
149–150

phyllosilicates, mylonitic 196
Brenner Fault Zone 188
mechanical anisotropy 191, 192, 193,
194–195
Simplon Fault Zone 186–188, 196
Sprechenstein–Mules Fault Zone 189–191

Piedras Negras 1990 earthquake 28, 29
plastic flow 115–117
modelling 118
Pliocene–Recent, Nile Delta 156–158, 165
Poás volcano 29, 31, 32
pore pressure/stress coupling
in anisotropic poroelasticity 205–209
fracture susceptibility 209–211
pore-fluid pressure 3
cracks 201, 202
and dilatancy 217–219
overpressure
magma chambers 111–127
and non-Andersonian faulting 166
non-optimal reverse faults 47–48
and shear failure 113–115
tectonic inversions 53
High-Ardenne Slate Belt 55
and tensile failure 113
sediment wedge movement, ABAQUS modelling
174–175, 177–178, 179, 180
see also overpressure; pore pressure/stress coupling

poroelasticity
anisotropic 201, 204–205
and fracture susceptibility 209–211
pore pressure/stress coupling 205–209
isotropic 201
porosity, fabric tensors 203
Port Campbell Limestone, reverse faulting 98
Porter’s Pass Fault 9, 10
Potoroo-1 well 71, 72, 74
Puriscal 1990 seismic swarms 29
Pusteria Fault 190

Rakaia Terrane 7
reactivation
Andersonian stress fields 2
Andersonian thrust faulting 40–42, 46, 48
Ceduna Sub-basin 78–79
Recherche Sub-basin 72, 73
reservoir engineering, upscaling permeability
223–226
INDEX

resistivity image logs 144–145
Nile Delta 158–159
Rhenohercynian foreland fold-and-thrust belt 53
ridge-push, Ceduna Sub-basin 78–79
Riku-u 1896 earthquake 44
ring-dykes 111
Rosetta fault trend 156

salt diapirs
DDWFTBs 75
stress deflection
Gulf of Mexico 146–148, 150–151
numerical modelling 148–149
San Andreas Fault 1, 155, 166, 185, 223
coefficient of friction 176
San Francisco 1906 earthquake 1
Santonian, Ceduna Sub-basin inversion 76, 78–79
scaling, dilatancy-diffusion hypothesis 215, 223–228
Schiehallion, Dalradian schist lineations, work of Anderson 2

sediment wedge movement
DDWFTBs 171–173
ABAQUS modelling 173–181
coefficient of friction 175–176, 178, 179–180
pore-fluid pressure 174–175, 177–178, 179
sediment rigidity 175, 178, 180
sediment wedge angle 176–177, 178–179, 180

critical taper wedge theory 171, 180–181

seismicity
and Andersonian model 2
Costa Rica 19, 28
Otway Basin 98–99
strain rate 99–101
and geological evidence 103–104
and stress transfer 24–25
shale diapirs, DDWFTBs 75

shear failure
brittle 39–40
reverse faults 46
magma chambers 113–115
overpressure 120–122, 123, 127
structures 123–124, 125
work of Anderson 1
Ship Shoal 3D seismic cube, salt diapirs 147–148, 149, 150
shortening, Neogene, Otway Basin 101–105, 107
Simplon Fault Zone LANF 186–188
Simplon Line 186–188, 187
slickenlines, Boltaña anticline 133, 134
slickensides, High-Ardenne Slate Belt 57
slip tendency 22–24
anisotropic foliated rock 192–194
Costa Rica 32, 35

slip-line field theory 115, 116
slip-line intersection 126
Solitario Laccolith 123, 125
South Alpine Bressanone Granite 190
Southern Alps, strain rates 12
Sprechenstein-Mules Fault Zone 189–191
‘staircase’ systems 43, 45, 48
strain, dilatant 221–222
strain rate
Neogene deformation, Otway Basin 101–103, 105–108
present-day seismic
Otway Basin 99–101
and geological evidence 103–104
South Island, New Zealand 11–12
upscaling 226
stress
effective 201–202, 204–205, 207, 210
horizontal tectonic component 58
principal 59, 202
see also palaeostress indicators
stress fields
Costa Rica 21–22
locally perturbed 2–3
regionally homogeneous, fault nucleation 2
stress inversion, focal mechanisms, South Island New Zealand 8, 10, 13
stress orientation analysis
Ceduna Sub-basin 83–85
Gulf of Mexico 145–146
and borehole stability 149–151
salt diapirs 146–149, 150
Nile Delta 158–159
present-day 159, 161–163
and Messinian evaporites 163
stress regimes
Bight Basin 81, 82
Otway Basin 93
South Island, New Zealand 8, 10–13
work of Anderson 1
stress-state evolution
compressive tectonic inversion
3D reconstruction 51, 53–67
extensional NE–SW basin model
61–63, 64
extensional NW–SE basin model 61, 64–65, 66
relaxed basin model 59–61, 64
‘wrench’ regime 59–60, 61, 62, 63, 64, 65, 66–67
Taiwan Accretionary Prism, critical taper wedge theory 180
Tauern Window, phyllosilicates 188
Temshah fault trend 156
tensile failure
classical solution 112–113
Grosfils’ solution 113
magma chamber overpressure 119–120, 121, 123, 127
Parovoz code 118
tensile fractures 4
drilling-induced
Gulf of Mexico 143–145
Otway Basin 93
Tiger supersequence 71, 73, 74, 75, 77–79
Tohoku 2011 earthquake 223
Tonalitic Lamella see Mules Tonalitic Lamella
Torquay Sub-basin, Neogene exhumation 94, 95, 96, 97
ultracataclasite
Brenner Fault Zone 188, 189
Simplon Fault Zone 187, 188
unconformity, Late Miocene-Early Pliocene, Otway Basin 95
uplift, Neogene, Otway Basin 97, 106, 107–108
Uttarkashi 1991 earthquake 42
Variscan Orogeny, High-Ardenne Slate Belt 54–57, 66
veins
High-Ardenne Slate Belt 54–57, 59, 64–65
bedding-normal 54–55, 57, 63–64, 65
bedding-parallel 55, 56, 57, 64, 65
as stress-state indicators 51, 53, 57
Virilla fault, Costa Rica 29, 30, 31
volcanism, Costa Rica 20
Warracburunah-2 well 96, 97
weakness 185–186, 195
Western Tottori earthquake, Andersonian wrench faulting 14–15, 16
White Pointer DDWFTB 71, 73, 74, 75, 76, 77–79
Wind River Thrust 40
Wobbegong supersequence 73, 75
World Stress Map
Andersonian stress provinces 2
Costa Rica 20, 22
ranking system 11, 145, 146, 159, 160
Young’s Modulus 175, 178, 180