Groundwater Resources Modelling:
A Case Study from the UK
The Geological Society of London
Books Editorial Committee

Chief Editor
BOB PANKHURST (UK)

Society Books Editors
JOHN GREGORY (UK)
JIM GRIFFITHS (UK)
JOHN HOWE (UK)
HOWARD JOHNSON (UK)
RICK LAW (USA)
PHIL LEAT (UK)
NICK ROBINS (UK)
RANDELL STEPHENSON (UK)

Society Books Advisors
ERIC BUFFETAUT (FRANCE)
JONATHAN CRAIG (ITALY)
TOM MCCANN (GERMANY)
MARIO PARISE (ITALY)
SATISH-KUMAR (JAPAN)
GONZALO VEIGA (ARGENTINA)
MAARTEN DE WIT (SOUTH AFRICA)

Geological Society books refereeing procedures

The Society makes every effort to ensure that the scientific and production quality of its books matches that of its journals. Since 1997, all book proposals have been refereed by specialist reviewers as well as by the Society’s Books Editorial Committee. If the referees identify weaknesses in the proposal, these must be addressed before the proposal is accepted.

Once the book is accepted, the Society Book Editors ensure that the volume editors follow strict guidelines on refereeing and quality control. We insist that individual papers can only be accepted after satisfactory review by two independent referees. The questions on the review forms are similar to those for Journal of the Geological Society. The referees’ forms and comments must be available to the Society’s Book Editors on request.

Although many of the books result from meetings, the editors are expected to commission papers that were not presented at the meeting to ensure that the book provides a balanced coverage of the subject. Being accepted for presentation at the meeting does not guarantee inclusion in the book.

More information about submitting a proposal and producing a book for the Society can be found on its web site: www.geolsoc.org.uk.

It is recommended that reference to all or part of this book should be made in one of the following ways:

Groundwater Resources Modelling: A Case Study from the UK

EDITED BY

M. G. SHEPLEY
AMEC, Canada

M. I. WHITEMAN
Environment Agency, UK

P. J. HULME
PJ Hydro, UK

and

M. W. GROUT
Environment Agency, UK

2012
Published by
The Geological Society
London
The Geological Society of London (GSL) was founded in 1807. It is the oldest national geological society in the world and the largest in Europe. It was incorporated under Royal Charter in 1825 and is Registered Charity 210161.

The Society is the UK national learned and professional society for geology with a worldwide Fellowship (FGS) of over 10,000. The Society has the power to confer Chartered status on suitably qualified Fellows, and about 2000 of the Fellowship carry the title (CGeol). Chartered Geologists may also obtain the equivalent European title, European Geologist (EurGeol). One fifth of the Society’s fellowship resides outside the UK. To find out more about the Society, log on to www.geolsoc.org.uk.

The Geological Society Publishing House (Bath, UK) produces the Society’s international journals and books, and acts as European distributor for selected publications of the American Association of Petroleum Geologists (AAPG), the Indonesian Petroleum Association (IPA), the Geological Society of America (GSA), the Society for Sedimentary Geology (SEPM) and the Geologists’ Association (GA). Joint marketing agreements ensure that GSL Fellows may purchase these societies’ publications at a discount. The Society’s online bookshop (accessible from www.geolsoc.org.uk) offers secure book purchasing with your credit or debit card.

To find out about joining the Society and benefiting from substantial discounts on publications of GSL and other societies worldwide, consult www.geolsoc.org.uk, or contact the Fellowship Department at: The Geological Society, Burlington House, Piccadilly, London W1J 0BG: Tel. +44 (0)20 7434 9944; Fax +44 (0)20 7439 8975; E-mail: enquiries@geolsoc.org.uk.

For information about the Society’s meetings, consult Events on www.geolsoc.org.uk. To find out more about the Society’s Corporate Affiliates Scheme, write to enquiries@geolsoc.org.uk.

Published by The Geological Society from:
The Geological Society Publishing House, Unit 7, Brassmill Enterprise Centre, Brassmill Lane, Bath BA1 3JN, UK

The Lyell Collection: www.lyellcollection.org
Online bookshop: www.geolsoc.org.uk/bookshop
Orders: Tel. +44 (0)1225 445046, Fax +44 (0)1225 442836

The publishers make no representation, express or implied, with regard to the accuracy of the information contained in this book and cannot accept any legal responsibility for any errors or omissions that may be made.

© The Geological Society of London 2012. No reproduction, copy or transmission of all or part of this publication may be made without the prior written permission of the publisher. In the UK, users may clear copying permissions and make payment to The Copyright Licensing Agency Ltd, Saffron House, 6-10 Kirby Street, London EC1N 8TS UK, and in the USA to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, USA. Other countries may have a local reproduction rights agency for such payments. Full information on the Society’s permissions policy can be found at: www.geolsoc.org.uk/permissions

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library.
ISBN 978-1-86239-344-8
ISSN 0305-8719

Distributors
For details of international agents and distributors see:
www.geolsoc.org.uk/agentsdistributors

Typeset by Techset Composition Ltd, Salisbury, UK
Printed by MPG Books Ltd, Bodmin, UK.
Foreword

When studying stratigraphy as an undergraduate geology major, I formed the impression that England was blessed with an orderly sequence of sedimentary rocks. This overly simplistic idea came from learning that William ‘Strata’ Smith (1769–1839) had used observations of fossils in southern England to correlate rock layers. Smith noticed that, in an undisturbed sequence of rocks, similar fossils occurred in layers in the same relative position. Unfortunately, an orderly sequence of rocks occurs only in southern England and even there the layers are deformed by bending. Considering the whole of the UK, the stratigraphic record is exceedingly complex, making for complex hydrogeology. Given such complexity, a programme to develop a network of regional groundwater flow models of the UK is ambitious.

Hydrogeologists dream of developing country-wide models for water resources management and planning. For example, regional models of the USA were developed by the US Geological Survey as part of the RASA (Regional Aquifer Systems Analysis) programme (Sun et al. 1997) and The Netherlands has a country-wide analytic element model (de Lange 2006). However, the UK modelling programme, which motivates this collection of papers, is unique in that it was initiated and is directed by a national regulatory agency and, importantly, is driven by mandates of the European Water Framework Directive (Hulme et al. 2002). Such legal requirements are imperative for an effective national network of models since they provide the incentive to maintain and improve the models long into the future. Too often models are ‘shelved’ and unused after the initial objective for developing the model is satisfied. Long-term upkeep of models, such as described herein by Hutchinson et al. (2012) and Jones et al. (2012), is rare.

As summarized in the excellent booklet by Downing (1998), there are four main aquifers in the UK, all found in the lowlands of England: the Chalk, the Permo Triassic Sandstones, the Jurassic limestones, and the Lower Greensand. Modellers have a good handle on simulating flow through continuous porous media like the Permo Triassic Sandstones, which comprise the UK’s second most important aquifer. Models are essential tools in assessing management issues for these productive aquifers, for example as discussed herein by Daily et al. (2012) and Shepley & Soley (2012), who focus on the Permo-Triassic Sandstone aquifer in the West Midlands. Simulating flow in fractured rock is considerably more challenging. How unlucky that the most important and prolific aquifer in the UK is a fractured rock – the Chalk. Internationally, the Chalk is the UK’s most famous aquifer. As discussed herein by Butler et al. (2012) and Watson et al. (2012), fundamental work in groundwater hydrology, including modelling flow in fractured rock, was conducted in the Chalk. Treating this aquifer as an equivalent porous medium (Jones et al. 2012; Soley et al. 2012b) can be appropriate for exploring questions of groundwater quantity, but it is likely that consideration of dual porosity/permeability will be needed to confront questions of groundwater quality (Butler et al. 2012; Cook et al. 2012; Taylor et al. 2012; Watson et al. 2012). Fractures are also important in the Carboniferous Limestone (Ingram et al. 2012), a karstified aquifer.

In documenting the first decade of a national modelling programme in the UK, the papers in this book reveal the possibilities of a regional network of groundwater models. For example, local models can be linked together to explore larger regional areas (Black et al. 2012) and also can be extracted from the regional network to explore site-scale problems (Gellatly et al. 2012). Not only are the papers in this book of historical interest in that they document the process of creating a national inventory of models, but they also form a casebook of modelling applications for some very challenging hydrogeological situations. In addition to the challenges of modelling fractured and karstified aquifers, the papers also describe approaches used in handling groundwater–surface water connections and the effects of abstraction on river flows (Daily et al. 2012; Hulme et al. 2012; Mansour et al. 2012; Shepley & Soley 2012; Soley et al. 2012a), sea water intrusion (Hutchinson et al. 2012), as well as ways of quantifying recharge for input to groundwater models (Quinn et al. 2012). The emerging push among modellers worldwide to engage stakeholders is also discussed (Hughes et al. 2012; Jones et al. 2012). Arguably, the most important challenge facing groundwater modellers in the twenty-first century is perfecting a practical approach for model calibration that effectively assesses uncertainties in parameter values. Calibration under uncertainty is best handled using an advanced inverse code such as PEST, as described by Black & Black (2012) and Taylor et al. (2012).

This is an important book. It forms a casebook of modelling applications to help guide both novice and experienced modellers. More importantly, it gives us a glimpse of a future when we will be able to access well-calibrated, standardized regional
models that can be combined or separated to solve hydrogeological problems on a variety of scales ranging from sites to countries and even continents.

MARY P. ANDERSON
Department of Geoscience, University of Wisconsin-Madison, WI, USA
(e-mail andy@geology.wisc.edu)

References

Preface

From the end of the 1990s to the present, the Environment Agency for England & Wales (the national environmental regulator with responsibility for water resources) has run a programme to develop regional groundwater flow models covering all the principal aquifers across England and Wales. We, the editors of this volume, have all been closely involved in this programme of work. The idea to produce the current volume germinated in 2009 when much of the work was nearing completion. It was a unique opportunity to record the state of groundwater resources modelling in the UK as a nationwide case study. Fortunately, many people thought likewise (i.e. the very large cast of authors) and it is thanks to them that we have enough material for a book.

The introduction to the volume provides a summary of the historical background to the programme and an overview of the papers presented. However, it does not fully highlight the role of three people in setting up the Environment Agency’s programme and bringing it to fruition. Andrew Skinner, a former director of the Environment Agency, was the key person with the vision to appreciate the importance of groundwater modelling in future water resources regulation, and during 1994 created the mandate to make it happen. Steve Fletcher from the former National Groundwater & Contaminated Land Centre of the Environment Agency drove forward the implementation of the programme across the Environment Agency and invited Professor Ken Rushton, formerly of the University of Birmingham, to work with the Environment Agency team. Ken Rushton shaped the programme and set standards, work practices and guidelines, which were then followed by Environment Agency staff and the consultants working on the programme. Although an insight is provided of Ken’s importance in the paper by Rushton & Skinner, it does not give the complete picture of how Ken has tirelessly and with good humour mentored, challenged and supported most of the people working on the programme for over a decade. We thank him for the help he has given us, and accept that any mistakes are likely to have arisen when we were not listening hard enough.

The setting up of the volume was facilitated by discussions and meetings of the UK Groundwater Modellers’ Forum. This group was started at the instigation of Steve Fletcher in 2004 and has had much success bringing together hydrogeologists, groundwater modellers and other scientists and engineers from government, academia and industry to promote collaboration and particularly better use of groundwater models.

Martin Shepley
Mark Whitteman
Paul Hulme
Mark Grout