activation energy see Arrhenius data analysis
Adria microplate
 collision with European plate 115
 modelling 120–125
 rheology 146
 rotation 115, 126
Sesia–Lanzo Zone 160
Aegean trench 130, 131
Africa–Europe convergence
 Calabrian Arc 130, 131, 141, 143, 144, 145, 146
 Western Alps 115, 121, 122, 125
albitization 65
Alps see Austroalpine domain; Central Alps; Western Alps
amphibolite-facies 65
anisotropy, seismic, deformed Montalto
 leucogneiss 49, 58, 60–65, 66, 67
Aravalli Mountain Belt 36, 37
Argentera–Mercantour massif, synmetamorphic
 boudinage 200–201
argon isotope dating 4
 K-feldspar, South Cyclades Shear Zone 17–33
 loss experiments 4–7
 pseudotachylytes 12
 transport 10
Argon Partial Retention Zone, K-feldspar, South
 Cyclades Shear Zone 17, 32, 33
Arrhenius data analysis
 K-feldspar 7
 South Cyclades Shear Zone 18, 19, 22, 23, 24, 25, 27–33
Aspromonte Massif 50, 51
asthenosphere, upwelling, Western
 Alps 116, 118
Austroalpine domain
 Languard–Tonale TMU 174–185, 192, 193
 Sesia–Lanzo Zone 150, 193
 tectonic evolution 160–168, 164
Biella pluton 160, 164
Biot folding mechanism 209, 216
biotite
 Ar loss 6
 destabilization 4–5
 kinked, Godhra Granite 36, 38, 42
blueschist-facies 160
bond strength 3
boudinage
 development 210, 212, 216, 217
 synmetamorphic 198–201
breakoff see slab detachment
brine
 intercrystalline 69
 conductivity 72
 electrical resistivity 69–70
 geometry 73–76
 grain boundary 75–77
Calabrian Arc, crustal deformation 129–146
 numerical modelling 130–146
 crustal thickness 133, 135
 GPS data 135–136, 137, 145
 heat flow 133, 135, 136
 lithospheric strength 133, 137–139, 140
 stress-strain data 135, 137, 142, 143
 tectonic deformation 140–146
 thermal analysis 133, 134, 137, 139
Cauchy stress 203, 211
Central Alps
 Languard–Tonale TMU 174–185, 193
 deformation and metamorphism 192, 198
Central Indian Tectonic Zone 36–37
 chessboard pattern, quartz, Godhra Granite 36, 38, 41, 42, 46
Clausius–Clapeyron slope 213
closure temperature 10
Dodsonian 4, 6, 9
collision see continental collision
 conductivity, intercrystalline brine 72
 constraints 2
continental collision
 slab detachment 100, 102, 106
 collision zone geometry 107, 108
continental crust
 exhumation 150, 151, 153, 157–160
 Sesia–Lanzo Zone 160
corner flow 149–150
coupling
 deformation and mineral reactions 203–208
 scale effects 204–205
crust see continental crust

Index

Note: Page numbers in italics denote figures. Page numbers in bold denote tables.
crystallographic preferred orientation (CPO) 79
Montalto Shear Zone leucogneiss 50, 58, 59, 60, 65, 67
Cycladic Massif 17
deformation
brittle, gypsum 82, 83, 85, 94–95, 96
brittle, Calabrian Arc 129–146
gypsum 79–96
microstructural analysis 83–87
quantitative texture analysis 87–94
shape-preferred orientation (SPO) 79, 83–87
influence on phase stability 211, 213–215, 216–217
interaction with metamorphism 189–218
leucogneiss, Montalto Shear Zone 50
mineral reactions 203–208, 211, 213–215, 216–217
scale effects 204–205, 215, 217
plastic
gypsum 82, 85, 94–95, 96
halite, electrical resistivity 69–77
polyphase, Languard–Tonale TMU 173–185
twins 36, 38, 41, 42, 45, 83
deglaciation, Alpine 125
Dent Blanche Nappe, synmetamorphic boudinage 198–199
detachment see slab detachment
diffusion
chemical potential gradients 202
Fick’s law 1–7, 10
multidomain models 19–33
natural geochronometers 7–9
OH 10
diffusivity
H and O 10
mica 4–6
dihedral angle 69, 76–77
Dioritic–Kinzigitic Zone 163, 164
disequilibrium 1–2, 9–13
heterochemical mixes 12–13
dissipation
coupling 203–204, 217
energy 189
viscous 100
dissolution, Wood–Walther 6
East European Platform 131
eclogite, exhumation 150
Sesia–Lanzo Zone 160, 163–168
eclogite-facies, Monte Mucrone 194, 196
Eclogitic Micaschists Complex 163, 164
synmetamorphic boudinage 199–200
ECORS-CROP seismic profile 117, 118, 119, 120
energy dissipation 189
Energy Equation 203, 204, 205, 217
entropy 201–202
equilibration, diffusive 1–13
European plate 130, 131
Fe–Mg zoning, garnet 7
feldspar, recrystallization 42
Fick’s law diffusion 1–7, 10
fluid, intercrystalline, deformed halite 69–77
fluid flow 189, 202
folds 197–198
Biot mechanism 209, 216
development 209–211, 212, 216
fractal cube, multidomain diffusion
models 20–23, 24, 25
fractal feathering 24, 27, 30, 33
fractal geometry, quartz grains
area-perimeter method 37, 40–41, 44
Godhra granite 37–47
ruler method 35–36, 37, 39–40, 41, 42, 43, 44
Fundamental Asymmetry Principle 23–24, 27–33
garnet
cation diffusion 4
diffusional re-equilibration 7
Montalto Shear Zone 55, 56
geochronometers, diffusion 7–9
experiments 4–7
geochemistry 11, 12, 13
Gibbs Free Energy 201, 203
gneiss, Languard–Tonale TMU 174
Gneiss Minuti Complex 163, 164
Godhra Granite 37, 38
fabric development 36–37
fabric distribution 39
kinked biotite 36, 38, 42
quartz grains
chessboard pattern 38, 41, 42, 46
fractal analysis 37–47
serration 39, 45
strain rates 40, 41–42, 45–46
grain boundaries, brine 75–77
granite
cooling rates 46
syntectonic see Godhra Granite
greenschist-facies 65, 160, 163–166
Languard–Tonale TMU 174, 177
retrogression 9, 160
gypsum, deformation
- grain size analysis 86
- microstructural analysis 83–87
- quantitative texture analysis 87–94
- shape-preferred orientation (SPO) 79, 83–87
- torsion experiments 79–96, 81

halite, deformation
- electrical resistivity 69–77
- fluid paths 72–76
- grain boundary wetting 75–77
- stress-strain curves 70–72

halite-water systems 69
- dihedral angle 69, 76–77
- grain boundary fluid 75–77

Hashin–Shtrikman approximation 63, 64
Helmholtz Free Energy 203
hydration, mantle 149–169
hydrogen, diffusivity 10

Imposed Shear Plane (ISP), gypsum 81, 83, 84, 85–87, 94

Insubric Line see Periadriatic Lineament
Ios, South Cyclades Shear Zone 17–33
isostatic uplift, Western Alps 115–126
isothermal duplicates 24, 25, 32
isotope retentivity 10–12, 11
isotope transport 2–13
Ivrea body 120

K-feldspar
- albitization 65
- Ar loss 6–7
- Ar retention, South Cyclades Shear Zone 17–33
- augens, Montalto Shear Zone 55, 56
- kink bands
- biotite 36, 38, 42
- gypsum 83

Languard–Campo Nappe 174
Languard–Tonale TMU 174–185, 175
- deformation 174, 176, 177, 180, 181–183
- and metamorphism 192, 195
- folding 198
- shear zones 197

fabric evolution 177
- 3D modelling 177–185
- metamorphic evolution 174, 176, 177
- modelling 177–185
- tectono metamorphic history 174, 177–185

Lattice Preferred Orientation (LPO),
gypsum 83, 85, 89
leucogneiss, mylonitic
- Montalto shear zone 49–67
- albitization 65
- chemical analysis 50, 53
- image analysis 50
- mineralogy 54–58, 65
- petrophysical analysis 50, 52
- P-wave velocity 58, 60, 61, 62, 63, 65
- S-wave velocity 58, 60–64, 65

MacArgon program 32

magmatism, bimodal, Alps 116, 118
mantle
- hydration 149–169
- modelling 150–160
- P–T data 158–160
- wedge
 - convective cell 151, 157–160, 169
 - corner flow 149, 169
- P–T conditions 169
- serpentinization 150

MATLAB program VPPLOT 63, 64
MAUD software 87

Mediterranean, central
- crustal deformation 129–146
 see also Calabrian Arc

Menger Sponge 20, 21, 23, 24, 26

metamorphism
- HP–LT, Western Alps 150, 169
- interaction with deformation 189–218
- non-equilibrium mineral reactions 190
- polyphase 173–185
- retrograde, Montalto Shear Zone 65
- metasomatism 189, 217

mica
- Ar isotope dating 4, 6
- diffusion experiments 4–6
- Montalto Shear Zone, CPO 55, 58, 59, 65, 67
- retrogression 8–9

mica, white, Montalto Shear Zone 55, 56, 58, 65

micaschist, Languard–Tonale TMU 174, 179

Mid-Atlantic Ridge 130, 131

mineral reactions
- and deformation 203–208, 211, 213–215, 216–217
- scale effects 204–205, 215, 217
- non-equilibrium 190

modelling
- crustal deformation, Calabrian Arc 130–146
modelling (Continued)
fabric evolution and metamorphic
transformation, Languard–Tonale
TMU 177–185
isostatic readjustment, Western Alps 115–126
multidomain diffusion models 19–33
oceanic-continental subduction, mantle
hydration 150–160
slab detachment 100–112
reference model 103, 106
thermomechanical model 102, 105–106,
107, 108, 110, 111, 112
Montalto Shear Zone 51
deformed leucogneiss 49–67
Monte Mucrone–Monte Mars TMU 193
deformation and metamorphism 190, 194
shear zones 194, 196
non-equilibrium 190
multidomain diffusion models 19–33
fractals 20–23, 24, 25
muscovite
destabilization 4–5
diffusive equilibration 10
mylonite
Montalto Shear Zone leucogneiss 49–67
P- and S-wave velocities 60, 61, 62, 63
myrmekite 36, 42, 55
necking, slab 100, 103, 106, 108
neutron diffraction, deformed gypsum 87, 88–89,
90–93, 94, 96
oceanic plate see subduction, oceanic-continental
Oetztal Nappe
folds 198, 199
shear zones 197, 198
olivine–spinel transition, slab detachment 100, 112
orientation distribution function (ODF),
deformed gypsum 87, 88
orthogneiss, mylonitic, Montalto Shear Zone 49–67
oxygen, diffusivity 10
P–T–A–X equilibrium 1, 2, 8–9, 10
P-wave velocity
Alps 118
leucogneiss, Montalto Shear Zone 58, 60, 61,
62, 63, 65
Penninic Front 118, 119, 120, 125
Periadriatic Lineament 118, 119, 120, 125, 163,
164, 166, 193
petrology, metamorphic, and non-equilibrium
thermodynamics 201–203
phase stability, influence of deformation 211,
213–215, 216–217
phlogopite, Ar loss experiments 5–6, 7
plate velocity, relative 106, 109–110
polycyclic tectonic evolution, Languard–Tonale
TMU 173–185
pseudotachylytes 12
quantitative texture analysis (QTA), gypsum 79,
87–94, 95, 96
quartz grains
fractal geometry methods 35–36
Godhra Granite
fractal analysis 37–47
serration 39, 45
Montalto Shear Zone 55, 56, 57, 59
CPO 58, 59, 65, 67
quartz → coesite reaction 213, 214, 215, 217
Rb–Sr isotope dating 3–4
re-equilibration
diffusional 7
Languard–Tonale TMU 173–174, 177
rebound, Western Alps 125
recrystallization
deforming halite 70–72, 76
eclogite-facies 160
hydrothermal 7
resistivity, electrical, deforming halite 69–77
retrogression 8–9, 12–13
greenschist-facies 9
rheology, lithospheric, central Mediterranean
130–146
Riedel-like deformation, gypsum 85, 94, 96
Rietveld texture analysis, deformed gypsum 87, 88
Rocca Canavese Thrust Sheet 163, 164
roll back, slab 106, 108
S-wave velocity
leucogneiss, Montalto Shear Zone 58, 60, 61,
62, 63, 64, 65
shear-wave splitting 60, 61, 62, 63, 64, 65
Schlingen Zone, folds 198, 199
Schneeberg Complex, folds 198, 199
seismotectonics, Western Alps 118
serpentinitization, mantle wedge 150
Sesia–Lanzo Zone 150, 164
deforestation and metamorphism 190
shear zones 196, 197
non-equilibrium 190
INDEX

synmetamorphic boudinage 199–200

tectonic evolution 160–168

P–T conditions 164, 165, 166, 167, 168–169

shape-preferred orientation (SPO)
deformed gypsum 79, 83–87, 96
Montalto Shear Zone leucogneiss 54, 65, 67
shear strain, gypsum 83, 85–87, 89, 90–93, 94–96

shear zones
development 208–209, 211, 215–216, 217
strain-rate-sensitive materials 207–211, 216
synmetamorphic, Italian Alps 192, 194, 196–197, 198, 217
viscosity 208–209, 215
see also Montalto Shear Zone; South Cyclades Shear Zone

slab detachment
Alpine chain 116, 118, 124, 125–126
bending 103, 106
collision zone geometry 107, 108
necking 100, 103, 106, 108
numerical modelling 99–112
petrological model 102
reference model 103, 106
olivine–spinel transition 100
phase transitions 110, 111
plastic 100
relative plate velocity 106, 109–110
relaxation 103, 106
roll back 106, 108
slab age 106, 109, 109
stretching 103, 106
viscous 99–100, 106
South Cyclades Shear Zone, K-feldspar 17–33
Sr isotope dating 4
step-heating experiments 20, 22, 23–24, 25, 27, 28

strain
deformed gypsum 83
leucogneiss, Montalto Shear Zone 50, 52, 65, 66, 67
Western Alps 117, 118
strain hardening/softening 206–211, 215, 216
strain rate 206–207, 215–216
Godhra Granite 36, 40, 41–42, 45–46
stress
Cauchy 203, 211
mean 202, 211
non-hydrostatic 202

subduction, oceanic-continental
ablative subduction 151, 153, 157, 168
mantle hydration 149–169
modelling 150–160
slab detachment 99–112, 103, 106
collision zone geometry 107, 108
relative plate velocity 106, 109–110
Western Alps 125–126
subduction plane, Western Alps 120, 125–126
tectonomorphic units (TMU)
fabric evolution and metamorphic
transformation 173–185
3D modelling 177–185
temperature–time evolution 2, 3
texture analysis, quantitative (QTA),
gypsum 79, 87–94, 95, 96
thermobarometry 8–9, 13
thermochronology 1, 11
thermodynamics
First and Second Laws 204
non-equilibrium 190
and metamorphic petrology 201–203
Tonale Series 174
see also Languard–Tonale TMU
torsion experiments, gypsum deformation
79–96, 81
trace elements, diffusion 10
Traversella pluton 164, 166
twinning 36, 38, 41, 42, 45
mechanical, gypsum 83
Tyrrenian Sea, crustal deformation
129–146
numerical modelling 130–146
uplift, Western Alps 116, 125–126
Valpelline Series, synmetamorphic boudinage
198–199
viscosity, in shear zones 208–209, 215

water
importance for equilibrium 10, 11, 12, 13
oceanic-continental subduction 150

wedge see mantle wedge
Western Alps
HP–LT metamorphism 150
isostatic readjustment 115–126
numerical modelling 120–126
horizontal velocities 121–122, 125
Western Alps (Continued)
 stresses 122–124, 125
 vertical velocities 123, 124–125
seismotectonics 118
Sesia–Lanzo Zone 150, 193
 deformation and metamorphism 190
tectonic evolution 160–168

stress-strain 117, 118, 125
uplift 125–126
X-ray diffraction, deformed gypsum 87, 88–89,
 90–93, 96
zircon, diffusion 7

INDEX