antecrysts 134, 135
Aolian Islands 34

Cathedral Peak Granodiorite 203–204

conclusions 230–231
discussion 223–225

compositional variation 226–230
internal contacts 225–226
field relations and petrography
aplitic dykes 209
Cathedral Peak petrography 209–211
interaction zones 211–214
ladder dykes 211
magmatic fabrics 215–216
magmatic faults 215
microgranitoid enclaves 209
potassium feldspar concentrations 214
Schlieren 209
gеological setting 204–205

method
analytical methods 205
geochronology 206–209
isotope data 212
major element oxides by XRF 207
mineral chemistry of plagioclase 205–206
sampling strategy 205
trace elements by ICP–MS 210–211
trace elements by XRF 208
U–Pb zircon data 213

results
feldspar chemistry 221–223
gеochronology 216–218
Sr and Nd isotopes 218–221
U–Pb geochronology 223, 224
crustal thickness 18–19
correlation with lava dome proportion
21, 23–25
crystal populations 133
combined textural analysis
approach 138–139
crystal size distributions 140
dihedral angles 140–143
Kameni enclaves 140
Santorini volcano 139–140
spatial distribution patterns 140

composition 133–134
antecrysts 134, 135
final texture 134–136
microlites 134, 135
phenocrysts 134, 135
xenocrysts 134, 135

conclusion 145
future developments
linking textures with microgeochemical
analysis 145
textural analysis 143–145
quantifying textural parameters 136
crystal shapes 136
crystal size distribution 136–137
dihedral angles 138
spatial distribution patterns
(SDPs) 137–138
crystal size distribution, three dimensional 48
differentiation, uniform processes 261–262
conclusions 279–280
discussion
implication for crustal growth 275–276
melt differentiation processes 276–279
geological setting 262
results
amphibole 268–271
apatite 271
climo- and orthopyroxenes 267–268
crystallization pressure 274–275
crystallization temperature 273
Fe–Ti-oxides 271–273
glass compositions 264–266
mineral chemistry 266–275
oxygen fugacity 273–274
plagioclase 266–267
samples and analytical methods 262–263
preparation 263–264
diffusion in a spherical grain 251
equilibrium fractionation factor 251

Fourier’s law 22
gas phase exsolution 50
Gibbs free energy 62
Global Volcanism Program (GVP) 16
reliability of eruption style data 20–22

Hawaiian tholeiite basalt 51–52
irregular arcs 16
magma migration 26
Izu Bonin volcanic arc 261–262
conclusions 279–280
discussion
implication for crustal growth 275–276
melt differentiation processes 276–279
geological setting 262
results
glass compositions 264–266
mineral chemistry 266–275
samples and analytical methods 262–263
preparation 263–264
Kilauea volcano 83
background and previous work 83–87
tectonics and plumbing system 85
conclusions 111
Kilauea volcano (Continued)
interpretation 103
eruption types and eruption rate 110–111
Halema‘uma‘u eruption 103–106
magmatic history 106–109
seismicity along magma supply path 109–110
significance of intrusion types 110
observations
eruption efficiency 94
eruption periods 91
precursory sequences to eruption and intrusion 92–94
seismic and deformation history 95–103
seismic and tilt sequences 94–95
seismic and tilt data 87–88
eruption and intrusions 90, 91
limitations on quantitative analysis of magma supply 91
map 88
Uwekahuna tilt data analysis 88–91
study assumptions 87
tilt and volume changes over eruptive cycles 112–114
lava dome proportion 16
correlation with crustal thickness 21, 23–25
correlation with plate convergence rate 22, 23–25
correlation with surface heat flux 20, 22–23
linear elastic fracture mechanics (LEFM) 73–74
magma chamber, short-lived stratified 149, 166
analytical methods 151–152
discussion 162
inferred magmatic processes 165–166
petrological features of andesitic end-member maags 162–163
petrological features of basaltic andesite maags 163–164
petrological features of basaltic end-member maags 163
three maags for tephra layers 162
geological features of tephra layers 151
geological outline of Zao volcano 149–151
mineral chemistry 155
glass inclusion compositions 157–158
Z-To5 layer 155–157
Z-To6 and 7 layers 157
petrography of tephra layers 152
Z-To5 layer 152–154
Z-To6 and 7 layers 154–155
whole rock compositions 158–162
mantle to crust magma transfer in volcanic arcs 15–16
conclusions 27
findings 20
$^{230}\text{U}/^{230}\text{Th}$ disequilibria 24
correlation with surface heat flux 22–23
geochemical evidence 25–26
magma migration in irregular arcs 26
reliability of GVP eruption style data 20–22
methodology
arcs with Holocene effusive eruptions 17
average viscosity determination 16
crustal thickness 18–19
plate convergence rate 19
surface heat flux 18
volcanic arc characterization 16–18
results 19–20
microlites 134, 135
phenocrysts 134, 135
plate convergence rate 19
correlation with lava dome proportion 22, 23–25
Poiseuille equation 72
Popocatepetl volcano 117
conclusions 130
discussion
dome evolution 128–129
magmatic plumbing 128
magnetic anomalies 127–128
observations
seismicity 120–122
volcanic activity 119–120
study methods
eruptive activity 117–118
magnetic signals 122–127
magnetism 118
seismicity 119
spring water 122
spring water and ash 119
random sphere distribution line (RSDL) 138
regular arcs 16
Santorini volcano 139–140
Kameni enclaves 140
crystal size distributions 140
dihedral angles 140–143
spatial distribution patterns 140
Sciare del Fuoco 35–36, 37
silicic magma production rates 169–170
amphibole, role of 174
conclusions 179
effect of recharge 175
model I – mixing before eruption 170–171
model II – melt assimilation during differentiation 171–174
physical implications 175–179
sill growth model 72–74
Snake River Plain – Yellowstone (SRPY) 235–236
basalt intrusion in middle–upper crust 244
discussion and summary 254–256
fundamental characteristics of magmatic province
rhyolite compositional variation 239
rhyolite petrology and temperature 238–239
rhyolite source 239–241
volcano-tectonic overview 236–237
volume and scale of rhyolite systems 237–238
INDEX
oxygen isotopic constraints on rhyolite genesis
diffusivity and fractionation factor
coefficients 252
oxygen isotope problem 250–251
theoretical considerations 251–252
physical models 244
magma reservoir model 244–246
thermal models for rhyolite generation 246–250
spatial distribution patterns (SDPs) of crystals 137–138
Stromboli volcano 33–34
analytical methods 38
bulk composition and glass chemistry 44–48
conclusions 59–62
crystal size distribution and intrabubble distances 48–50
golden pumice 51
scoriae and lavas 50–51
geological setting and volcanological outline 34–35
eruptions, historic and current 36–38
geological map 36
structural framework 35–36
volcano 35
melt and magma viscosity 51–53
petrography and mineral compositions 38–44
petrology and phase relationships 53–54
plumbing system and magma chamber shape 57–59, 60
P–T path summary 58
thermobarometric constraints 54–57
surface heat flux 18
correlation with lava dome proportion 20, 22–23
Tamman–Vogel–Fulcher (TVF) 51–53
Tindari–Letojanni fault system 34
Tuolumne Batholith (TB) 203–204
conclusions 230–231
discussion 223–225
compositional variation 226–230
internal contacts 225–226
field relations and petrography
aplitic dykes 209
Cathedral Peak petrography 209–211
interaction zones 211–214
ladder dykes 211
magmatic fabrics 215–216
magmatic faults 215
microgranitoid enclaves 209
potassium feldspar concentrations 214
Schlieren 209
geological setting 204–205
method
analytical methods 205
geochemistry 206–209
isotope data 212
isotope data 212
major element oxides by XRF 207
mineral chemistry of plagioclase 205–206
sampling strategy 205
trace elements by ICP–MS 210–211
trace elements by XRF 208
U–Pb zircon data 213
results
feldspar chemistry 221–223
geochemistry 216–218
Sr and Nd isotopes 218–221
U–Pb geochronology 223, 224
Tuolumne Intrusive Suite (TIS) 183–184
discussion
low-temperature mineral equilibrium 193
origin of chemical variation 193–195
significance of mapped plutonic units 198–199
source of isotopic variability 195–198
spatial and temporal variations in composition 193
time–space patterns of geochemical variation 198
geological setting 184–186
petrology
major- and trace-element geochemistry 188–190
methods 186
mineral chemistry 186–188
radioactive isotope geochemistry 191–193
thermobarometry 188
summary 199
viscous dissipation in sill growth 71–72
conclusions 79–80
implications for numerical modelling 78
implications for sill thickness prediction 78–79
near-tip region 74–75
propagation regime 75–76
sill growth model 72–74
sill growth regime 77–78
volcanic arcs, first-order observations 15–16
conclusions 27
findings 20
238U/230Th disequilibria 24
correlation with surface heat flux 22–23
geochronological evidence 25–26
magma migration in irregular arcs 26
reliability of GVP eruption style data 20–22
methodology
arcs with Holocene effusive eruptions 17
average viscosity determination 16
crustal thickness 18–19
plate convergence rate 19
surface heat flux 18
volcanic arc characterization 16–18
results 19–20
Williams expansion 73–74
xenocrysts 134, 135
Zao volcano 149, 166
analytical methods 151–152
discussion 162
inferred magmatic processes 165–166
petrological features of andesitic end-member magmas 162–163
petrological features of basaltic andesite magmas 163–164
petrological features of basaltic end-member magmas 163
three magmas for tephra layers 162
Zao volcano (Continued)
geological features of tephra layers 151
geological outline 149–151
mineral chemistry 155
glass inclusion compositions 157–158

Z-To5 layer 155–157
Z-To6 and 7 layers 157
petrography of tephra layers 152
Z-To5 layer 152–154
Z-To6 and 7 layers 154–155
whole rock compositions 158–162