Economic and Palaeoceanographic Significance of Contourite Deposits
The Geological Society of London

Books Editorial Committee

Chief Editor

BOB PANKHURST (UK)

Society Books Editors

JOHN GREGORY (UK)

JIM GRIFFITHS (UK)

JOHN HOWE (UK)

PHIL LEAT (UK)

NICK ROBINS (UK)

JONATHAN TURNER (UK)

Society Books Advisors

MIKE BROWN (USA)

ERIC BUFFETAUT (France)

RETO GIERÉ (Germany)

JON GLUYAS (UK)

DOUG STEAD (Canada)

RANDELL STEPHENSON (The Netherlands)

Geological Society books refereeing procedures

The Society makes every effort to ensure that the scientific and production quality of its books matches that of its journals. Since 1997, all book proposals have been refereed by specialist reviewers as well as by the Society’s Books Editorial Committee. If the referees identify weaknesses in the proposal, these must be addressed before the proposal is accepted.

Once the book is accepted, the Society Book Editors ensure that the volume editors follow strict guidelines on refereeing and quality control. We insist that individual papers can only be accepted after satisfactory review by two independent referees. The questions on the review forms are similar to those for Journal of the Geological Society. The referees’ forms and comments must be available to the Society’s Book Editors on request.

Although many of the books result from meetings, the editors are expected to commission papers that were not presented at the meeting to ensure that the book provides a balanced coverage of the subject. Being accepted for presentation at the meeting does not guarantee inclusion in the book.

More information about submitting a proposal and producing a book for the Society can be found on its website: www.geolsoc.org.uk.

It is recommended that reference to all or part of this book should be made in one of the following ways:

Economic and Palaeoceanographic Significance of Contourite Deposits

EDITED BY

A. R. VIANA
Petrobras, Brazil

and

M. REBESCO
Istituto Nazionale di Oceanografia e di Geofisica Sperimentale, Italy

2007
Published by
The Geological Society
London
THE GEOLOGICAL SOCIETY

The Geological Society of London (GSL) was founded in 1807. It is the oldest national geological society in the world and the largest in Europe. It was incorporated under Royal Charter in 1825 and is Registered Charity 210161.

The Society is the UK national learned and professional society for geology with a worldwide Fellowship (FGS) of over 9000. The Society has the power to confer Chartered status on suitably qualified Fellows, and about 2000 of the Fellowship carry the title (CGeol). Chartered Geologists may also obtain the equivalent European title, European Geologist (EurGeol). One fifth of the Society’s fellowship resides outside the UK. To find out more about the Society, log on to www.geolsoc.org.uk.

The Geological Society Publishing House (Bath, UK) produces the Society’s international journals and books, and acts as European distributor for selected publications of the American Association of Petroleum Geologists (AAPG), the Indonesian Petroleum Association (IPA), the Geological Society of America (GSA), the Society for Sedimentary Geology (SEPM) and the Geologists’ Association (GA). Joint marketing agreements ensure that GSL Fellows may purchase these societies’ publications at a discount. The Society’s online bookshop (accessible from www.geolsoc.org.uk) offers secure book purchasing with your credit or debit card.

To find out about joining the Society and benefiting from substantial discounts on publications of GSL and other societies worldwide, consult www.geolsoc.org.uk, or contact the Fellowship Department at: The Geological Society, Burlington House, Piccadilly, London W1J 0BG: Tel. +44 (0)20 7434 9944; Fax +44 (0)20 7439 8975; E-mail: enquiries@geolsoc.org.uk.

For information about the Society’s meetings, consult Events on www.geolsoc.org.uk. To find out more about the Society’s Corporate Affiliates Scheme, write to enquiries@geolsoc.org.uk.

Published by The Geological Society from:
The Geological Society Publishing House, Unit 7, Brassmill Enterprise Centre, Brassmill Lane, Bath BA1 3JN, UK
(Orders: Tel. +44 (0)1225 445046, Fax +44 (0)1225 442836)
Online bookshop: www.geolsoc.org.uk/bookshop

The publishers make no representation, express or implied, with regard to the accuracy of the information contained in this book and cannot accept any legal responsibility for any errors or omissions that may be made.

© The Geological Society of London 2007. All rights reserved. No reproduction, copy or transmission of this publication may be made without written permission. No paragraph of this publication may be reproduced, copied or transmitted save with the provisions of the Copyright Licensing Agency, 90 Tottenham Court Road, London W1P 9HE. Users registered with the Copyright Clearance Center, 27 Congress Street, Salem, MA 01970, USA: the item-fee code for this publication is 0305-8719/07/$15.00.

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library.

Typeset by Techset Composition Ltd, Salisbury, UK
Printed by The Cromwell Press, Wiltshire, UK

Distributors

North America
For trade and institutional orders:
The Geological Society, c/o AIDC, 82 Winter Sport Lane, Williston, VT 05495, USA
Orders: Tel +1 800-972-9892
Fax +1 802-864-7626
E-mail gsl.orders@aidcvt.com

For individual and corporate orders:
AAPG Bookstore, PO Box 979, Tulsa, OK 74101-0979, USA
Orders: Tel +1 918-584-2555
Fax +1 918-560-2652
E-mail bookstore@aapg.org
Website http://bookstore.aapg.org

India
Affiliated East-West Press Private Ltd, Marketing Division, G-1/16 Ansari Road, Darya Ganj,
New Delhi 110 002, India
Orders: Tel. +91 11 2327-9113/2326-4180
Fax +91 11 2326-0538
E-mail affiliate@vsnl.com
Contents

Preface vii

VIANA, A. R., ALMEIDA, W., JR, NUNES, M. C. V. & BULHÕES, E. M. The economic importance of contourites 1

LLAVE, E., HERNÁNDEZ-MOLINA, F. J., SOMOZA, L., STOW, D. A. V. & DÍAZ DEL RÍO, V. Quaternary evolution of the contourite depositional system in the Gulf of Cadiz 49

MORAES, M. A. S., MACIEL, W. B., BRAGA, M. S. S. & VIANA, A. R. Bottom-current reworked Palaeocene–Eocene deep-water reservoirs of the Campos Basin, Brazil 81

REBESCO, M., CAMERLENGHI, A., VOLPI, V., NEAGU, C., ACCETTELLA, D., LINDBERG, B., COVA, A., ZGUR, F. & THE MAGICO PARTY. Interaction of processes and importance of contourites: insights from the detailed morphology of sediment Drift 7, Antarctica 95

LUCCHI, R. G. & REBESCO, M. Glacial contourites on the Antarctic Peninsula margin: insight for palaeoenvironmental and palaeoclimatic conditions 111

CARTER, R. M. The role of intermediate-depth currents in continental shelf–slope accretion: Canterbury Drifts, SW Pacific Ocean 129

ROBINSON, R. S., MURILLO DE NAVA, J. M. & GORSLINE, D. S. Slope currents and contourites in an eastern boundary current regime: California Continental Borderland 155

VERDICCHIO, G., TRINCARDI, F. & ASIOLI, A. Mediterranean bottom-current deposits: an example from the Southwestern Adriatic Margin 199

VAN ROOI, D., BLAMART, D., KOZACHENKO, M. & HENRIET, J.-P. Small mound contourite drifts associated with deep-water coral banks, Porcupine Seabight, NE Atlantic Ocean 225

ESMERODE, E. V., LYKKE-ANDERSEN, H. & SURYLK, F. Ridge and valley systems in the Upper Cretaceous chalk of the Danish Basin: contourites in an epeiric sea 265

GEORGIEV, G. & BOTOUCHAROV, N. Are there Middle Jurassic contourites in the Tarnovo depression (Southern Moesian platform margin)? 283

HÖNEKE, H. Pelagic carbonate ooze reworked by bottom currents during Devonian approach of the continents Gondwana and Laurussia 299

LIMA, J. A. M., MOLLER, O. O., JR, VIANA, A. R. & PIOVESAN, R. Hydrodynamic modelling of bottom currents and sediment transport in the Canyon São Tomé (Brazil) 329

Index 343
Preface

The sunny summer of 2004 in Florence, Italy, witnessed the meeting of more than 50 people from academia and industry to discuss their ideas about the fascinating but still controversial world of contourites and bottom-current dominated sedimentary environments. Speeches and posters from different stratigraphic, bathymetric and geographical contexts were passionately presented. A panel discussion, carried out after the oral presentations, suggested some future trends in contourites research. Among the most important items suggested were the economic importance of contourite deposits and their stratigraphic–palaeoceanographic relationships.

The growing interest provoked by such themes, previously expressed by the editorial success of the Geological Society Memoir 22 (Deep-Water Contourites: Modern Drifts and Ancient Series, Seismic and Sedimentary Characteristics) edited by Stow et al. in 2002, was confirmed by the great number of participants in the General Symposium on Contourites held in Florence, 2004, during the 32nd International Geological Congress.

The study of the contourite deposits requires the application of many different theoretical, experimental and empirical resources provided by geophysics, sedimentology, geochemistry, experimental petrology, structural geology, scale modelling and field geology. Following this philosophy, we have edited this volume with the aim of providing an integrated approach for the study of the relevant contourite-related themes highlighted in the Florence meeting: their economic interest and palaeoceanographic implications. Our additional intention in editing this volume is to widen the understanding of the physical mechanisms involved in the sedimentation from contour currents, to better predict and evaluate their role in deposition.

This volume is composed of 16 papers broadly subdivided into two major categories (economic interest and stratigraphic–palaeoceanographic significance), with some of the papers lying between these two research areas. The last paper is dedicated to numerical simulations of contour currents and their impact on sedimentation.

The first five papers have strong economic appeal. Viana et al. discuss the main aspects of economic interest of contourite deposits, most of them related to the elements of petroleum systems. Modern and ancient cases are retrieved from international literature and presented under this new approach. Some new examples from the SE Brazil margin are presented for the first time, including 3D seismic, core and borehole data.

The contourite sand-rich channels from the North Atlantic described by Akhmetzhanov et al. constitute very important and well-documented examples of sediment accumulations with large and unexploited potential as reservoir rocks. Similarities to and distinctions from turbidite channels are also addressed.

Llave et al. provide us with a discussion on the Quaternary evolution of the contourite depositional system (CDS) in the Gulf of Cadiz based on morphological, structural and stratigraphic analyses using high-resolution seismic lines, borehole data and shallow coring data. Erosion-dominated episodes are contrasted with depositional ones as well as the distribution of coarse-grained versus fine-grained deposits, offering a very detailed temporal and spatial distribution of the various depositional elements that constitute a CDS.

Moraes et al. focus on an early Cenozoic case from the Campos Basin. They describe the presence of turbidite beds, reworked by bottom currents and interbedded with sandstones, and discuss their impact in the appraisal of a deep-water oilfield. The authors present a distinction between the classical turbidites, which constitute excellent reservoirs in the study case, and current-reworked sandstones that locally act as reservoir baffles or barriers.

Acting as a link between the first part of this volume, mostly dedicated to the papers that present relevant economic aspects, and the second part, in which discussions on the stratigraphic and palaeoceanographic aspects of contourite systems prevail, Rebesco et al. distinguish between contourites and turbidites based on swath bathymetry data recently acquired on Drift 7 off the Antarctica Peninsula. The authors discuss the coexistence of different sedimentary processes involving gravity flows and oceanic bottom currents expressed in the resultant sea-floor morphology and sediment accumulation characteristics.

The stratigraphic–palaeoceanographic papers are arranged in two sections. The first section consists of examples of Cenozoic to Quaternary contourites ordered geographically as a ‘world ocean tour’, beginning on the Pacific margin of the Antarctica Peninsula and continuing across the western and eastern Pacific, then to the southwestern Atlantic and finally ending with the Mediterranean and NW Atlantic. The second section includes three fossil cases, ordered from...
the most recent (Late Cretaceous) to the oldest (Palaeozoic).

The first paper of the stratigraphic–palaeoceanographic part is by Lucchi & Rebesco and discusses the palaeoenvironmental and palaeoclimatic conditions for the deposition of glacial contourites along most of the Antarctic margin. Such deposits constitute atypically non-bioturbated, ice-rafted debris rich layers and the authors propose to use them as proxies to define temporal and spatial extension of the Antarctic sea-ice. Such facies coexist with other sediment types and are predominantly derived from sediment-rich gravity flows.

Carter discusses the Canterbury Drifts, SW Pacific Ocean, which were deposited since the Oligocene. The author bases his study on the analysis of data derived from outcrops, marine seismic survey, coring and imaging, and borehole data. The emphasis is on the role of intermediate-depth currents in continental shelf–slope accretion. This approach builds on the hypothesis that slope currents interact with terrigenous derived sediments and the resultant deposit is a slope wedge formed by the welding of slope plastered drifts and the shelf–slope prograding clinoforms. Such a mechanism is probably present worldwide and its importance could be underestimated as a sedimentary process constructing continental margins.

Robinson et al. discuss the impact of glacial–interglacial modifications in the behaviour of the California Counter Current along the California Borderland on the sedimentary record. The authors report a decrease in the intensity of bottom reworking from late Marine Isotope Stage 5 (MIS 5) to the Holocene, expressed in variations in the grain size of associated deposits and in the degree of bioturbation. These observations indicate that sediment transport by bottom currents is not restricted to the western boundary currents but may also be the product of the action of bottom currents on eastern boundary slopes.

Duarte & Viana present a new Cenozoic drift system occurring in the SW Atlantic Ocean. The Santos Drift System is studied using industrial 3D and 2D seismic and borehole data. The authors identify two major drift complexes, a slope plastered drift and a separated drift, and establish their stratigraphic organization related to glacioeustatic curves and to major climatic–palaeoceanographic events. The study indicates that periods of relative high sea level correspond to phases of increasing drift thickening whereas during predominant lowstands slope drift sedimentation is reduced.

Verdicchio et al. deal with the bottom-current deposits along the southwestern Adriatic Margin, Mediterranean Sea. Using high-resolution seafloor imaging and sub-bottom profiling coupled with piston core analysis, the authors study the dramatic palaeogeographical and palaeoceanographic rearrangements that occurred in the Adriatic during the Late Quaternary sea-level oscillations and the depositional response to those modifications.

From the Northern Atlantic, the paper by Van Rooij et al. discusses the close association of small, mounded contourite drifts and cold-water coral banks, observed along the Porcupine Seabight. The authors propose that the different characteristics of the coral banks development are directly related to climate-driven modifications of the slope current regime and its interaction with tides and slope physiography.

The last paper of this part of the volume presents the Eirik Drift as a long-term barometer of the North Atlantic deepwater flux south of the Greenland margin. Hunter et al., using seismic stratigraphic techniques, report that the Eirik Drift contains an expanded sedimentary record of bottom and intermediate current intensity variation ranging from the Early Eocene to the Holocene. The authors note that variations in current strength on a decadal to millennial time scale can be related to changes in thermohaline circulation and climate, with a number of internal discontinuities reflecting a variety of palaeoceanographic events.

The next three papers deal with ancient contourite systems ranging from Mesozoic to Palaeozoic ages. Esmerode et al. propose that the flooding of the NW European craton during the Late Cretaceous trangression created relatively deep epeiric seas into which the oceanographic conditions that prevail on continental margins extended. Such starved basins, instead of presenting flat-lying pelagic successions, are marked by the sedimentary record of the action of strong bottom currents that developed a multitude of imprints on the chalk deposits, such as sediment waves, drifts, moats and extensive unconformities. The authors identified two major episodes of drift deposition in the Danish Basin, one in the Santonian to Campanian and one in the Maastrichtian, developed by the northwestward flow of contour currents.

Georgiev & Botoucharov use borehole data, cores and industry seismic data to present the possibility that a middle Jurassic interbedding of shales and siltstones occurring in the South Moesian platform (Bulgaria) constitutes the sedimentary record of bottom-current processes. The structurally controlled palaeophysiography would have strongly influenced the bottom circulation and hence sediment deposition.

Detailed outcrop studies coupled with palaeogeographical reconstruction lead Hünke to propose that the Devonian calcareous bioclastic successions observed in Germany, Morocco, Austria and
Italy preserve facies characteristics corresponding to contourites. The author observes that the widespread current-induced reworking of calcareous sediments, phosphate formation and major erosion-related hiatuses are associated with major palaeocirculation events that would have occurred as a result of the acceleration of thermohaline currents accompanying the narrowing of the oceanic passageway between the approaching Laurussia and Gondwana continents during the middle and late Devonian.

This volume is completed by a paper by Lima et al. in which a hydrodynamic numerical model is proposed to study the behaviour of bottom currents flowing along a submarine canyon and adjacent open slope and shelf edge, and their interaction with sediment-rich turbidity currents flowing down-canyon. The model describes the importance of differing current-forcing mechanisms, and estimates their resultant sediment transport under the combined action of turbidity and bottom currents. The editors agree that this approach, as much as physical modelling, is useful to better quantify the impact of bottom currents among the diversity of sedimentary processes occurring in the deep ocean. This may lead to a wider understanding of the role of bottom currents in the geological record and reduce the gap between the different techniques used in earth and oceanic sciences.

No publication can achieve a good scientific standard without the tremendous dedication of the authors and coauthors of the contributions. To all of them we would like to express our deep acknowledgement. Also of huge importance was the role performed by the reviewers, who realized the difficulties of the authors, who may sometimes be too deeply involved with their own data. The reviewers deserve our greatest recognition; they are A. Akhmetzhanov; A. Bouma; A. Carmelenghi; M. Carminatti; S. Ceramicola; E. Cowan; B. de Mol; C. Escutia Dotti; D. Evans; J.-C. Faugères; E. Gonthier; J. Howe; B. Kuvaas; J.-S. Laberg; P. Magalhães; E. Mutti; W. Normark; D. Piper; M. Roveri; I. Soares; G. Stampfli; D. Stow; F. Surlyk; G. Uenzelmann; J. Veevers. Angharad Hills, Commissioning Editor of the Geological Society Publishing House, invited the conveners of the symposium in Florence to edit this Special Publication for the Geological Society of London. Thanks to her and to her continuous and friendly support, we have shared a heavy but pleasant task during this last year and a half.

This list of acknowledgements would not be complete if the editors left out Petrobras and OGS. These institutions provide a clear example of how the association between industry and science may grant the necessary conditions to achieve the supreme objective of fostering the advancement of knowledge. It is thanks to these institutions that we have achieved our major objective with this volume: to provide the readers with the knowledge acquired by the authors.

Adriano R. Viana
Michele Rebesco
April 2006

Petrobras are thanked for their generous contribution to colour printing costs.