Channel Flow, Ductile Extrusion and Exhumation in Continental Collision Zones
The Geological Society of London

Books Editorial Committee

B. PANKHURST (UK) (CHIEF EDITOR)

Society Books Editors
J. GREGORY (UK)
J. GRIFFITHS (UK)
J. HOWE (UK)
P. LEAT (UK)
N. ROBINS (UK)
J. TURNER (UK)

Society Books Advisors
M. BROWN (USA)
E. BUFFETAUT (France)
R. GIERÉ (Germany)
J. GLUYAS (UK)
D. STEAD (Canada)
R. STEPHENSON (Netherlands)

Geological Society books refereeing procedures

The Society makes every effort to ensure that the scientific and production quality of its books matches that of its journals. Since 1997, all book proposals have been refereed by specialist reviewers as well as by the Society’s Books Editorial Committee. If the referees identify weaknesses in the proposal, these must be addressed before the proposal is accepted.

Once the book is accepted, the Society Book Editors ensure that the volume editors follow strict guidelines on refereeing and quality control. We insist that individual papers can only be accepted after satisfactory review by two independent referees. The questions on the review forms are similar to those for Journal of the Geological Society. The referees’ forms and comments must be available to the Society’s Book Editors on request.

Although many of the books result from meetings, the editors are expected to commission papers that were not presented at the meeting to ensure that the book provides a balanced coverage of the subject. Being accepted for presentation at the meeting does not guarantee inclusion in the book.

More information about submitting a proposal and producing a book for the Society can be found on its web site: www.geolsoc.org.uk.

It is recommended that reference to all or part of this book should be made in one of the following ways:

Channel Flow, Ductile Extrusion and Exhumation in Continental Collision Zones

EDITED BY

R. D. LAW
Virginia Tech, USA

M. P. SEARLE
University of Oxford, UK

and

L. GODIN
Queen’s University, Canada

2006
Published by
The Geological Society
London
THE GEOLOGICAL SOCIETY

The Geological Society of London (GSL) was founded in 1807. It is the oldest national geological society in the world and the largest in Europe. It was incorporated under Royal Charter in 1825 and is Registered Charity 210161.

The Society is the UK national learned and professional society for geology with a worldwide Fellowship (FGS) of over 9000. The Society has the power to confer Chartered status on suitably qualified Fellows, and about 2000 of the Fellowship carry the title (CGeol). Chartered Geologists may also obtain the equivalent European title, European Geologist (EurGeol). One fifth of the Society’s fellowship resides outside the UK. To find out more about the Society, log on to www.geolsoc.org.uk.

The Geological Society Publishing House (Bath, UK) produces the Society’s international journals and books, and acts as European distributor for selected publications of the American Association of Petroleum Geologists (AAPG), the Indonesian Petroleum Association (IPA), the Geological Society of America (GSA), the Society for Sedimentary Geology (SEPM) and the Geologists’ Association (GA). Joint marketing agreements ensure that GSL Fellows may purchase these societies’ publications at a discount. The Society’s online bookshop (accessible from www.geolsoc.org.uk) offers secure book purchasing with your credit or debit card.

To find out about joining the Society and benefiting from substantial discounts on publications of GSL and other societies worldwide, consult www.geolsoc.org.uk, or contact the Fellowship Department at: The Geological Society, Burlington House, Piccadilly, London W1J 0BG: Tel. +44 (0)20 7434 9944; Fax +44 (0)20 7439 8975; E-mail: enquiries@geolsoc.org.uk.

For information about the Society’s meetings, consult Events on www.geolsoc.org.uk. To find out more about the Society’s Corporate Affiliates Scheme, write to enquiries@geolsoc.org.uk.

Published by The Geological Society from:
The Geological Society Publishing House, Unit 7, Brassmill Enterprise Centre, Brassmill Lane, Bath BA1 3JN, UK
(Orders: Tel. +44 (0)1225 445046, Fax +44 (0)1225 442836)
Online bookshop: www.geolsoc.org.uk/bookshop

The publishers make no representation, express or implied, with regard to the accuracy of the information contained in this book and cannot accept any legal responsibility for any errors or omissions that may be made.

© The Geological Society of London 2006. All rights reserved. No reproduction, copy or transmission of this publication may be made without written permission. No paragraph of this publication may be reproduced, copied or transmitted save with the provisions of the Copyright Licensing Agency, 90 Tottenham Court Road, London W1P 9HE. Users registered with the Copyright Clearance Center, 27 Congress Street, Salem, MA 01970, USA: the item-fee code for this publication is 0305-8719/06/$15.00.

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library.
ISBN 1-86239-209-9
ISBN 13 978-1-86239-209-0

Typeset by Techset Composition, Salisbury, UK
Printed by Cromwell Press, Trowbridge, UK

Distributors

North America
For trade and institutional orders:
The Geological Society, c/o AIDC, 82 Winter Sport Lane, Williston, VT 05495, USA
Orders: Tel +1 800-972-9892
Fax +1 802-864-7626
Email gsl.orders@aidcvt.com

For individual and corporate orders:
AAPG Bookstore, PO Box 979, Tulsa, OK 74101-0979, USA
Orders: Tel +1 918-584-2555
Fax +1 918-560-2652
Email bookstore@aapg.org
Website http://bookstore.aapg.org

India
Affiliated East-West Press Private Ltd, Marketing Division, G-1/16 Ansari Road, Darya Ganj, New Delhi 110 002, India
Orders: Tel. +91 11 2327-9113/2326-4180
Fax +91 11 2326-0538
E-mail affiliate@vsnl.com
Contents

Dedication vii
Memorial for Doug Nelson ix
Acknowledgements x

Introduction

Godin, L., Grujic, D., Law, R. D. & Searle, M. P. Channel flow, ductile extrusion and exhumation in continental collision zones: an introduction
Grujic, D. Channel flow and continental collision tectonics: an overview

Evolution of ideas on channel flow and ductile extrusion in the Himalaya–Tibetan Plateau system

Klemperer, S. L. Crustal flow in Tibet: geophysical evidence for the physical state of Tibetan lithosphere, and inferred patterns of active flow
Hodges, K. V. A synthesis of the Channel Flow–Extrusion hypothesis as developed for the Himalayan–Tibetan orogenic system

Modeling channel flow and ductile extrusion processes

Beaumont, C., Nguyen, M. H., Jamieson, R. A. & Ellis, S. Crustal flow modes in large hot orogens
Medvedev, S. & Beaumont, C. Growth of continental plateaus by channel injection: models designed to address constraints and thermomechanical consistency
Grasemann, B., Edwards, M. A. & Wiesmayr, G. Kinematic dilatancy effects on orogenic extrusion
Jones, R. R., Holdsworth, R. E., Hand, M. & Goscombe, B. Ductile extrusion in continental collision zones: ambiguities in the definition of channel flow and its identification in ancient orogens
Williams, P. F., Jiang, D. & Lin, S. Interpretation of deformation fabrics of infrastructure zone rocks in the context of channel flow and other tectonic models

Geological constraints on channel flow and ductile extrusion as an important orogenic process

Himalaya–Tibetan Plateau
Harrison, T. M. Did the Himalayan Crystallines extrude partially molten from beneath the Tibetan Plateau?
Robinson, D. M. & Pearson, O. N. Exhumation of Greater Himalayan rock along the Main Central Thrust in Nepal: implications for channel flow
Locking of southward extrusion in favour of rapid crustal-scale buckling of
the Greater Himalayan sequence, Nar valley, central Nepal

SCAILLET, B. & SEARLE, M. P. 293
Mechanisms and timescales of felsic magma
segregation, ascent and emplacement in the Himalaya

ANNEN, C. & SCAILLET, B. 309
Thermal evolution of leucogranites in extensional faults:
implications for Miocene denudation rates in the Himalaya

WANG, Y., LI, Q. & GUOSHENG, Q. 327
$^{40}\text{Ar}/^{39}\text{Ar}$ thermochronological constraints on the
cooling and exhumation history of the South Tibetan Detachment System,
Nyalam area, southern Tibet

SEARLE, M. P., LAW, R. D. & JESSUP, M. J. 355
Crustal structure, restoration and evolution
of the Greater Himalaya in Nepal–South Tibet: implications for channel flow and
ductile extrusion of the middle crust

JESSUP, M. J., LAW, R. D., SEARLE, M. P. & HUBBARD, M. S. 379
Structural evolution and
vorticity of flow during extrusion and exhumation of the Greater Himalayan Slab,
Mount Everest Massif, Tibet/Nepal: implications for orogen-scale flow partitioning

HOLLISTER, L. S. & GRUJC, D. 415
Pulsed channel flow in Bhutan

CAROSI, R., MONTOMOLI, C., RUBATTO, D. & VISONÀ, D. 425
Normal-sense shear zones
in the core of the Higher Himalayan Crystallines (Bhutan Himalaya):
evidence for extrusion?

LEE, J., MCCLELLAND, W., WANG, Y., BLYTHE, A. & McWILLIAMS, M. 445
Oligocene–Miocene middle crustal flow in southern Tibet: geochronology
of Mabja Dome

AOYA, M., WALLIS, S. R., KAWAKAMI, T., LEE, J., WANG, Y. & MAEDA, H. 471
The Malashan gneiss dome in south Tibet: comparative study with the
Kangmar dome with special reference to kinematics of deformation and
origin of associated granites

Hellenides and Appalachians

XYPOLIAS, P. & KOKKALAS, S. 497
Heterogeneous ductile deformation along a
mid-crustal extruding shear zone: an example from the
External Hellenides (Greece)

HATCHER, R. D. Jr. & MERSCHAT, A. J. 517
The Appalachian Inner Piedmont:
an exhumed strike-parallel, tectonically forced orogenic channel

Canadian Cordillera

BROWN, R. L. & GIBSON H. D. 543
An argument for channel flow in the
southern Canadian Cordillera and comparison with Himalayan tectonics

CARR, S. D. & SIMONY, P. S. 561
Ductile thrusting versus channel flow in the
southeastern Canadian Cordillera: evolution of a coherent crystalline thrust sheet

KUIPER, Y. D., WILLIAMS, P. F. & KRUSE, S. 589
Possibility of channel flow in the
southern Canadian Cordillera: a new approach to explain existing data

Index 613
THIS VOLUME IS DEDICATED
TO THE WORK OF
KARL DOUGLAS NELSON
26 March 1953–17 August 2002

Doug supervising INDEPTH-III field operations from the running-board of his field vehicle,
on the banks of Siling Tso, central Tibet, summer 1998.
Memorial for Doug Nelson

Doug Nelson, the Jessie Page Heroy Professor of Earth Sciences and Department Chair at Syracuse University, died as he was reaching new heights in an increasingly distinguished career. His sudden and untimely death from heart failure robbed us all of many insights and papers that would have been forthcoming in decades still to come. His most visible legacy is a new understanding of Tibet, resulting in large part from the work that he led and supervised as the intellectual leader of the INDEPTH (International Deep Profiling of Tibet and the Himalaya) program.

Doug graduated from Cornell University with a BS in 1975. He received his PhD as a structural geologist working on the Newfoundland Appalachians from SUNY Albany in 1979, at a time when that department stressed the continuum from field observations to plate-tectonic synthesis. After a brief post-doctorate at Otago University, New Zealand, Doug returned to Cornell University to join COCORP (Consortium for Continental Reflection Profiling). There he learned to interpret deep seismic reflection data, and to value geophysics for the study of large-scale processes in mountain belts. Doug became a proponent of taking the COCORP methodology to the greatest of all mountain belts, the Himalaya.

When Doug first went to Tibet in the 1980s, even the basic crustal architecture was uncertain; for example, whether the plateau crust was thick because two normal crusts had been vertically stacked, or because a single crust had been thickened by pure shear. Doug used the pilot 1992 INDEPTH reflection profile across the Himalaya to show that the Indian foreland was subducting beneath southern Tibet along an active master detachment—named by Doug the Main Himalayan Thrust—to depths from which it could confidently be extrapolated to underthrust the Indus-Tsangpo suture. This result only fuelled speculation on the ultimate northward limit of penetration of Indian crust beneath Tibet, and the fate of the subducting continental crust in the suture zone. Doug had already addressed this mass-balance problem for the overthickened crust of other continent–continent collisions, arguing from reflection profiles for delamination in the Appalachians, but for a phase change at the Moho in the Trans-Hudson orogen.

The second and third INDEPTH field campaigns in 1994 and 1998 progressed into interior Tibet, and added to the original reflection profiling additional scientific techniques: wide-angle and refraction seismology, broadband teleseismic recording, magnetotelluric observations and field geology. Doug actively participated in all these separate programmes, and more than anyone was the enthusiastic integrator in the large multi-national group of investigators (from the USA, China, Canada and Germany), best able to synthesize seemingly disparate observations from all the techniques. Doug’s intellectual legacy includes a generation of students and colleagues, at Syracuse, Cornell and the other INDEPTH institutions, who now regard such broad interdisciplinary science as the norm.

The most serendipitous discovery of the INDEPTH project, and the most consequential, was the crustal melts in southern Tibet, recognized independently by all the geophysical techniques employed. Doug, by now professor at Syracuse University, pushed forward studies on the structure of the suture zone that, he believed, could be regarded as a region of mixing of the crusts of India and Tibet, which then extruded towards India, crystallizing as leucogranites now exposed at the erosional front of the High Himalaya. Doug’s recognition of partial melting in interior Tibet implied at once that this region is hot, and hence mobile. Much of the recent popularity of models of continent–continent collisions in which material transport is dominated by middle and lower crustal flow must be attributed to observations such as these that bear directly on crustal viscosity. Though such flow is now widely accepted, this is only a recent paradigm shift.

Doug was a master of his trade, able to integrate his training as a field geologist with the big picture drawn from his regional geophysical surveys. Although he did not live to write a final synthesis of the INDEPTH results, our picture of Tibet and hence of all continent–continent collisions has changed and grown far richer, a legacy that enriches the Earth Sciences community.

Simon Klemperer
Acknowledgments

The papers in this volume arise from a conference held at the Geological Society of London on 6–7 December 2004. The conference was attended by 102 participants from 13 countries. We thank all the conference participants for a fascinating series of talks and posters and for lively discussion. We would also like to thank all contributors for dealing with editorial decisions courteously and promptly, and the Geological Society Publishing House for their help and advice.

We gratefully acknowledge the following colleagues who helped with the reviewing of manuscripts submitted for this volume.

Tom Argles, Open University, UK
Jean-Philippe Avouac, California Institute of Technology, USA
Chuck Bailey, College of William & Mary, USA
Rebecca Bendick, Cambridge University, UK
Andy Bobyarchick, University of North Carolina at Charlotte, USA
Dick Brown, Carleton University, Canada
Roger Buck, Columbia University, USA
Jean-Pierre Burg, ETH-Zurich, Switzerland
Mike Cosca, Université de Lausanne, Switzerland
Alexander Cruden, University of Toronto, Canada
Nick Culshaw, Dalhousie University, Canada
Peter DeCelles, University of Arizona, USA
Declan De Poar, Boston University, USA
John Dewey, University of California at Davis, USA
Mike Edwards, University of Vienna, Austria
Taras Gerya, ETH-Zurich, Switzerland
Dan Gibson, Simon Fraser University, Canada
Bernhard Grasseman, University of Vienna, Austria
John Grocott, Kingston University, UK
Djordje Grujic, Dalhousie University, Canada
Stéphane Guillot, Université de Lyon, France
Brad Hacker, University of California at Santa Barbara, USA
Nigel Harris, Open University, UK
Mark Harrison, Australian National University, Australia
Kip Hodges, Massachusetts Institute of Technology, USA
Greg Houseman, Leeds University, UK
Mary Hubbard, Kansas State University, USA
Becky Jamieson, Dalhousie University, Canada
Mike Johnson, University of Edinburgh, UK
Richard Jones, University of Durham, UK
Bill Kid, State University of New York at Albany, USA
Simon Klemperer, Stanford University, USA
Jeff Lee, Central Washington University, USA
Sergei Medvedev, Freie Universität Berlin, Germany
Mike Murphy, University of Houston, USA
Steve Noble, British Geological Survey, UK
Randy Parrish, British Geological Survey, UK
Nick Pettford, Kingston University, UK
John Platt, University of Southern California, USA
Uwe Ring, Johannes Gutenberg Universität, Germany
Martin Robyr, Université de Lausanne, Switzerland
Philip Simony, University of Calgary, Canada
Christian Teysssier, University of Minnesota, USA
Basil Tikoff, University of Wisconsin - Madison, USA
Peter Treloar, Kingston University, UK
Jonathan Turner, University of Birmingham, UK
Simon Wallis, Nagoya University, Japan
Donna Whitney, University of Minnesota, USA
Paul Williams, University of New Brunswick, Canada
Paris Xypolias, University of Patras, Greece