Index

Note: page numbers in italics denote Figures, while those in bold indicate Tables.

acoustic rolling contact (ARC) transducers 9
alkenones 20
applications
 CORTEX scanner 5
digital imaging 5
 Eagle III BKA system 35–7
geochemistry 65–77
 ITRAX core scanner 6, 60–2, 92
multi-sensor core loggers 4
 non-imaging optical systems 5
porosity logging 4
X-ray computed tomography 6
X-ray fluorescence scanners 5–6
ARC see acoustic rolling contact transducers
archives see databases
arsenic 92
Artificial Neural Network SST 101, 104
Atlantic sediments 39–50
digital imaging 5
Eagle III BKA system 35–7
geochemistry 65–77
ITRAX core scanner 6, 60–2, 92
multi-sensor core loggers 4
non-imaging optical systems 5
porosity logging 4
X-ray computed tomography 6
X-ray fluorescence scanners 5–6
ARC see acoustic rolling contact transducers
archives see databases
arsenic 92
Artificial Neural Network SST 101, 104
Atlantic sediments 39–50
digital imaging 5
Eagle III BKA system 35–7
geochemistry 65–77
ITRAX core scanner 6, 60–2, 92
multi-sensor core loggers 4
non-imaging optical systems 5
porosity logging 4
X-ray computed tomography 6
X-ray fluorescence scanners 5–6

Balearic Abyssal Plain 79–98
biogenic opal content 115, 121, 123–4, 126–7
biomarkers 20–1
BOSCORF see British Ocean Sediment Core Research Facility
boundaries
 Cretaceous–Tertiary 12, 14, 16
 Palaeocene–Eocene 12, 13, 14
Br/Cl ratio 92
British Ocean Sediment Core Research Facility
 (BOSCORF) 66
bulk density estimates 173
 Ca/Fe ratio 85–91
calcite see calcium carbonate
calcium carbonate
coralline aragonite 47–8
 VNIS 130, 131–4, 136, 138
 XRF core scanning 43–5
cameras 12, 101–2, 113–14, 117
carbonates
 cold-water mounds 47–8
core analysis 115–17, 121, 124, 126
 MRI visualization 202–3
 see also calcium carbonate
 Cariaco Basin, offshore Venezuela 35
cathodoluminescence (CL) imaging 142
centric span SPRITE imaging technique 201–2
 Challenger expedition 1–2
 chamber systems, HYACINTH 156–7
 chemical fossils 20–1
 Compton scattering 85, 86, 87, 88–90
 computed tomography (CT) 18, 19, 165–78
 see also portable X-ray computed tomographic system
 confocal microscope–microscope luminescence
 imaging 19–20, 141–50
 instrumentation 142–5
 scan results 145–8
terminology 143
 Conical-SPRITE methodology 202, 202
 core analysis 21
core data
 digitizing methods 238–9
 efficient graphical data entry 237, 238
 end users 2
 national and world data centres 243
 participating institutions 242
 stewardship 241–51
core recovery 21
core-logging systems
 development 7–8
 see also core data
core-logging systems (cont.)
generator 234–5
HYACINTH 151–65
multi-sensor loggers 4, 8–12
non-destructive techniques 4–6, 7–20
CoreWall data visualization system 116
correlation coefficients 116
CORTEX XRF scanner 5, 39, 40, 42, 79
counter-current imbibition 204–5
Cretaceous–Tertiary boundary 12, 14, 16
CT scanning see computed tomography
Cu/Rb profile 92
currents, Gulf of Cadiz 99–101
dissociation experiments
HYACINTH system 160
methane hydrate 172–7
disturbance from core retrieval 151–2
drilling
Deep Sea Drilling Project 3, 7–8, 22
rig measurements, permafrost 186–90
see also Integrated Ocean Drilling Program;
logging-while-drilling; Ocean Drilling Program
DSDP see Deep Sea Drilling Project
Dynamic Autoclave Piston Corer 152
Eagle III BKA system 31–7
analytical conditions 33–4
applications 35–7
design 32–4
specification 34
efficient graphical data entry 237, 238
electrical induction logging 209–17
electrical resistivity 10, 209
electromagnetic conductivity measurements 209–11
element ratios
sapropels 68–74
turbidites 85–92, 87
elements, ITRAX scans 70, 72, 82–8
data acquisition and processing 117–20
data mining 232
data visualization 23–4
data bases 22–3
computed core log 235
dbSEABED 229–40
EU-SEASED 244–5
EUROCORE 244–5
geospatial 250
Index to Marine and Lacustrine Geological
Samples 241, 243–8
integration 229–40
JANUS 253–9
stewardship 241–51
dating of sediments 81–2
dbSEABED database 23, 229–40
data processing 232–3
input data 229–32
stratigraphic outputs 233–7
uncertainties 233
depth biosphere 21
Deep Sea Drilling Project (DSDP) 3, 7–8, 22
deep-sea exploration history 1–3
design
Eagle III BKA system 32–4
logging-while-drilling 219–20
rapid non-contact resistivity logging 211
detection limits 42
diatom mat image 146
Dibden Bay, Southampton Water 19
digital colour analysis 113–28
applications 5
data acquisition and processing 117–20
materials and methods 114–20
scope and techniques 12–15, 18
sediment colour and composition 120–7
digitizing methods 238–9
galvanic induction 209, 211, 212
Gamma Ray Attenuation Porosity Evaluator (GRAPE) 4, 8
gamma-ray densiometry (GRD) 171–2, 173
gas hydrates
assay and growth habit 186
nuclear magnetic resonance 180–5
occurrence 21
pressure logging 151–65
properties 179–80
quantitative assay 183
sea-floor measurements 185–6
see also HYACINTH system; methane hydrate
genetic units determination 80, 81
geochemistry
ITRAX core scanner 65–77
NE Pacific sediments 115–17
sapropels 66–75
GEOSCAN camera 12, 101–2
geospatial databases 250
GEOTEK multi-sensor core logger
applications 4
configuration 10
integration 216
vertical logging 9, 10, 159–60
Geowall project 23
Germany, deep-sea exploration 2
GISP2 chronology 104
global accessibility 21–3
GoC see Gulf of Cadiz
grain-size analysis 84, 91
see also lightness
Guaymas Basin sediments 114, 115, 124
Gulf of Cadiz (GoC) sediments 99–112
GVR-6 tool 224, 225, 226
hardgrounds 47–8
high-resolution
colour logging 99–112
core-logging systems 7
digital colour analysis 113–28
X-ray fluorescence analyser 31–7
historical development
core-logging systems 8
deep-sea exploration 1–3
Holocene, colour variability 105–8
Hot Ice #1 methane hydrate research well 172–7
HPC see Hydraulic Piston Corer
HRC see HYACE Rotary Corer
HYACE see HYdrate Autoclave Coring Equipment
HYACE Rotary Corer (HRC) 155
HYACINTH system 21, 151–65
components 158
development 153
dissociation experiments 160
downdhole tools 153
ODP Leg 204 159–62
subsampling 157, 158
transfer and chamber systems 155–9
HYdrate Autoclave Coring Equipment (HYACE) 21, 153
see also HYACINTH system
hydraulic permeability 184–5
Hydraulic Piston Corer (HPC) 7–8
ice
assay and growth habit 187–9
quantitative assay 183
illite 130, 131–4, 136
illumination geometry 131
IMAGES see International Marine Past Global Changes Study
imbibition 203–5
in situ pressures 21, 151
Index to Marine and Lacustrine Geological Samples 241, 243–8
induction logging 209–17
information processing 229–40
see also databases
infrared (IR) thermal imaging 14–15
see also visible and near-infrared reflectance spectroscopy
inorganic geochemistry, sapropels 66–75
input data 229–32
institutions collaborating on databases 242
instrumentation
ITRAX 54
macroscopic–microscopic system 142–5
non-destructive core logging 3–7
nuclear magnetic resonance 185
VNIS 130–1, 132
Integrated Ocean Drilling Program (IODP) 3
VNIS 135, 137, 138
worldwide access to data 253–9
internal structures visualization 202–3
International Marine Past Global Changes Study (IMAGES) 3
internationalization of databases 244–5
Internet mapping 250
IODP see Integrated Ocean Drilling Program
IR imaging see infrared thermal imaging
ITRAX multi-function X-ray core scanner 17, 51–63
applications 6, 60–2, 92
conventional WD-XRF comparison 56, 57, 59, 60, 69
limitations 92
output parameters 61
sapropel geochemistry 65–75
materials and methods 66
sapropel S1 71–4
sapropel S3 74–5
scanning procedure 52–3
second-generation 57–60
specifications 51–7
turbidite emplacement 79–98
applications and limitations 92
element profiling 82–4
JANUS database 22–3, 253–9
access 259
data flow 255, 256
data overview 258
development 253–5
enhancements 255–9
JOIDES Resolution
logging-while-drilling 220–2
Ocean Drilling Program 3
portable CT scanner 165–6, 167, 171–2
pressure corers 153, 155, 160

K/Rb ratio 92

Lake Huron core 145
language parsing 232
light intensity see reflectance spectroscopy
lightness 99, 103, 121–5, 126
lithostratigraphy, Walvis Ridge 16
Llyn Gwernan, Wales 114, 115, 125
logging
chambers 156, 160
tools 185
see also core-logging systems
logging-while-drilling (LWD) 219–28
density measurements 173
ODP tests 219, 220–4
system design and testing 219–20
low-latitude Pacific clays 134
luminescence imaging 141–50
LWD see logging-while-drilling

MAC see OMEGA Multi Autoclave Corer
macroscope–microscope system 141–50
macroscopic magnetization 194–5
magnetic moment 194
magnetic resonance imaging (MRI) 19, 193–207
rock structures visualization 202–3
spontaneous imbibition 203–5
theory 194–202
see also nuclear magnetic resonance
magnetic susceptibility
cold-water carbonate mounds 48
mud volcano sediments 46
multi-sensor logging 9–11
Marine Isotope Stages 1–3, 79–98
MDCB see Motor Driven Core Barrel
measurement chambers 157
Mediterranean Outflow (MO) 101
Mediterranean sediments
sapropels 61–2, 65–77
turbidites 79–98
Meerfelder Maar core 36
metadata 249–50
methane hydrate
core disturbance 152
dissociation experiments 172–7
occurrence 21
see also gas hydrates
microscopes see confocal macroscope–microscope
luminescence imaging
Milankovitch variability 43–5
minerals
reflectance spectroscopy 135–7

INDEX

standards, VNIS 131–4
Minolta spectrophotometer 130
MO see Mediterranean Outflow
molecular stratigraphy 20–1
Motor Driven Core Barrel (MDCB) 220, 221, 226
MR see magnetic resonance
MRI see magnetic resonance imaging
MSCL-V see Vertical Multi-Sensor Core Logger
MSCLs see multi-sensor core loggers
mud volcano sediments 46–7
multi-function X-ray core scanners 17, 51–63
multi-sensor core loggers (MSCLs) 4, 8–12

national data centres 243
National Geophysical Data Center (NGDC) 241, 243, 244–50
National Oceanic and Atmospheric Administration (NOAA) 243–4, 246
NE Atlantic sediments 39–50
NE Pacific sediments 114, 115, 122
NGDC see National Geophysical Data Center
NMR see nuclear magnetic resonance
NOAA see National Oceanic and Atmospheric Administration
non-contact resistivity logging 209–17
non-destructive core logging techniques 4–6, 7–20, 51
non-imaging optical systems 5, 15–17
nuclear magnetic resonance (NMR) 19, 179–92
basic principles 180–1
gas hydrates 185–90
hydraulic permeability 184–5
logging tools 185
permafrost 182–5
porous media 181–2
see also magnetic resonance imaging

Ocean Drilling Program (ODP)
core data 22
data overview 258
development 3, 7
fluorescence intensity data 149
Hole 1249A 224, 225
Hole 1249B 223, 225
Leg 138 8
Leg 164 159
Leg 171 254
Leg 201 14
Leg 204 15, 159–62, 171–2, 173, 220–4
Leg 207 13
Leg 209 226
Leg 210 167
logging-while-drilling 219, 220–4
NE Pacific sites 114–15
portable X-ray CT scanner 159–62
pressure coring 152–3, 159–62
Site 1262 16
VNIS 137
worldwide access to data 253–9
OMEGA Multi Autoclave Corer (MAC) 152
on-site geological core analysis 165–78
opal
biogenic content 115, 121, 123–4, 126–7
VNIS 130, 131–5, 136
optical systems, non-imaging 15–17
organic carbon
colour analysis 115–17
digital colour analysis 120–7
VNIS 135
output-flow 239
OXCAL calibration program 102–3
oxygen isotope series 103, 104
Pacific sediments
clays 134, 146
colour analysis 114, 115, 122
geochimistry 115–17
ODP sites 114–15
Palaeocene–Eocene boundary 12, 13, 14
Palmer Deep, Antarctic Peninsula 114, 115, 123
partnerships, systems design 250
PCS see Pressure Core Sampler
pelagic sediments 82, 131–4
permafrost
drilling rig measurements 186–90
nuclear magnetic resonance 179–92
relative permeability 189–90
permeability
hydraulic 184–5
relative 189–90
petrophysical analysis 193
photography see cat :ras; digital imaging
photoluminescence (PL) imaging 145–6, 148
piston corers 2–3, 8
pixel values 144
PL see photoluminescence
planktonic foraminiferal tests 101, 107, 109
point data 23
pore-scale imaging 179–82
porosity log ng applications 4
porous media
NMR T 1–2
relaxation theory 196–8
portable X-ray computed tomographic system 165–78
medic. CT system comparison 166
ODP Leg 204 171–2
system description 166–71
Pressure Core Sampler (PCS) 152–3, 159
pressure coring 151–65
see also HYACINTH system
prosumer cameras 113–14
P-wave data 9
quantitative magnetic resonance imaging 193–207
quantitative micro-XRF analysis 59–60
RAB-8 see Resistivity-at-Bit tool
radiofrequency field 195
radiographs
densiometric measurements 171–2, 173
with/without compensators 168–9
rapid non-contact resistivity logging 209–17
case examples 216
depth of investigation 212–16
design and performance 211–12
formation factors 215–16
galvanic induction comparison 209, 211, 212
records of multi-sensor core loggers 11
reflectance spectroscopy 15–17, 129–42
see also visible and near-infrared reflectance spectroscopy
relative permeability 189–90
relaxation theory 196–8
relaxation times 195–6
remotely operated sub-sea vehicle (ROV) 185–6
resistive layers 211–12, 213
resistivity imaging chambers 157
resistivity logging, non-contact 209–17
Resistivity-at-Bit (RAB-8) tool 220, 222–4, 225, 226
Rosemary Bank, NE Atlantic 43–4
ROV see remotely operated sub-sea vehicle
sampling
Avaatech XRF core scanner 40–1
data processing 232–3
Eagle III BKA system 32–3
HYACINTH system 157, 158
Santa Barbara Basin sediments 114, 121, 147
sапропелы 61–2, 65–77
inorganic geochemistry, S 1 71–4
inorganic geochemistry, S 2 74–5
ITRAX scanning methods 66
scanners see multi-sensor core loggers; portable X-ray computed tomographic system; X-ray fluorescence scanners
Schlumberger
Combinal Magnetic Resonance Tool 185, 187
Genesis rig 221
Resistivity-at-Bit tool 220, 222–4, 225, 226
Scotia Shelf specimens 148
sea surface temperature (SST) 101, 104
sea-floor sediments
data end users 2
exploration 1–3
gas hydrate measurements 185–6
large databases 229–40
second-generation ITRAX 57–60
sediments
colour analysis 113–28, 129
composition 113–28, 129
mineralogy 129–42
see also Atlantic sediments; Pacific sediments; sea-floor sediments
Severn Estuary sediments 60–1
Shear Transfer Chamber (STC) 156
INDEX

emplacement time and bed thickness 93–5

grain-size analysis 84, 91

graphic logs 83, 84

internal subdivisions 95

measured integrals and ratios 85–92

sources 95

UK, deep-sea exploration 1–2

uncertainties 233

unfrozen water 182–3

unit data 231

variability of colour 105–9

VariSpot X-ray focusing system 34

VDN tool see VISION Density Neutron tool

vertical logging 9

Vertical Multi-Sensor Core Logger (MSCL-V) 159–60

viброcore core-log format 230

visible and near-infrared reflectance spectroscopy (VNIS) 129–42

illumination geometry 131

instrumentation 130–1, 132

mineral calculation 135–7

pilot studies 131–5

water effect 131

VISION Density Neutron (VDN) tool 224, 226

Walvis Ridge, SE Atlantic 16

water content

Palmer Deep sediments 126–7

reflectance spectroscopy 131

wavelength dispersive X-ray fluorescence (WD-XRF) 56, 57, 59, 60, 69

wireline logging 227

wireline-operated pressure corers 153–4

world data centres 243

X-ray computed tomography

applications 6, 19

development 18

portable CT core scanner 165–78

X-ray fluorescence scanners 17–18

applications 5–6

Avaatech scanner 39–50

colour analysis 101–2

CORTEX scanner 39, 40

Eagle III BKA system 31–7

Younger Dryas, D13892 chronology 99–112

Zr/Rb ratio 92

emplacement time and bed thickness 93–5

grain-size analysis 84, 91

graphic logs 83, 84

internal subdivisions 95

measured integrals and ratios 85–92

sources 95

UK, deep-sea exploration 1–2

uncertainties 233

unfrozen water 182–3

unit data 231

variability of colour 105–9

VariSpot X-ray focusing system 34

VDN tool see VISION Density Neutron tool

vertical logging 9

Vertical Multi-Sensor Core Logger (MSCL-V) 159–60

viброcore core-log format 230

visible and near-infrared reflectance spectroscopy (VNIS) 129–42

illumination geometry 131

instrumentation 130–1, 132

mineral calculation 135–7

pilot studies 131–5

water effect 131

VISION Density Neutron (VDN) tool 224, 226

Walvis Ridge, SE Atlantic 16

water content

Palmer Deep sediments 126–7

reflectance spectroscopy 131

wavelength dispersive X-ray fluorescence (WD-XRF) 56, 57, 59, 60, 69

wireline logging 227

wireline-operated pressure corers 153–4

world data centres 243

X-ray computed tomography

applications 6, 19

development 18

portable CT core scanner 165–78

X-ray fluorescence scanners 17–18

applications 5–6

Avaatech scanner 39–50

colour analysis 101–2

CORTEX scanner 39, 40

Eagle III BKA system 31–7

Younger Dryas, D13892 chronology 99–112

Zr/Rb ratio 92