Vertical Coupling and Decoupling
in the Lithosphere
Special Publication reviewing procedures

The Society makes every effort to ensure that the scientific and production quality of its books matches that of its journals. Since 1997, all book proposals have been refereed by specialist reviewers as well as by the Society’s Books Editorial Committee. If the referees identify weaknesses in the proposal, these must be addressed before the proposal is accepted.

Once the book is accepted, the Society has a team of Book Editors (listed above) who ensure that the volume editors follow strict guidelines on refereeing and quality control. We insist that individual papers can only be accepted after satisfactory review by two independent referees. The questions on the review forms are similar to those for Journal of the Geological Society. The referees’ forms and comments must be available to the Society’s Book Editors on request.

Although many of the books result from meetings, the editors are expected to commission papers that were not presented at the meeting to ensure that the book provides a balanced coverage of the subject. Being accepted for presentation at the meeting does not guarantee inclusion in the book.

Geological Society Special Publications are included in the ISI Index of Scientific Book Contents, but they do not have an impact factor, the latter being applicable only to journals.

More information about submitting a proposal and producing a Special Publication can be found on the Society’s web site: www.geolsoc.org.uk.

It is recommended that reference to all or part of this book should be made in one of the following ways:

Vertical Coupling and Decoupling in the Lithosphere

EDITED BY

J. Grocott
Kingston University, UK

K. J. W. McCaffrey
University of Durham, UK

G. Taylor
University of Plymouth, UK

and

B. Tikoff
University of Wisconsin, USA
Contents

Grocott, J., McCaffrey, K. J. W., Taylor, G. & Tikoff, B. Vertical coupling and decoupling in the lithosphere

Geophysical constraints on vertical coupling in the lithosphere

Savage, M. K., Fischer, K. M. & Hall, C. E. Strain modelling, seismic anisotropy and coupling at strike-slip boundaries: applications in New Zealand and the San Andreas Fault

Tikoff, B., Russo, R., Teysier, C. & Tommasi, A. Mantle-driven deformation of orogenic zones and clutch tectonics

Vertical axis block rotations in the upper crust, horizontal and vertical partitioning and implications for vertical coupling-decoupling in the lithosphere

Legg, M. R., Kamerling, M. J. & Francis, R. D. Termination of strike-slip faults at convergence zones within continental transform boundaries: examples from the California Continental Borderland

Giorgis, S., Markley, M. & Tikoff, B. Vertical-axis rotation of rigid crustal blocks driven by mantle flow

Teysier, C. & Cruz, L. Strain gradients in transpressional to transtensional attachment zones

Cerca, M., Ferrari, L., Bonini, M., Corti, G. & Manetti, P. The role of crustal heterogeneity in controlling vertical coupling during Laramide shortening and the development of the Caribbean–North America transform boundary in southern Mexico: insights from analogue models

Fabbri, O., Iwamura, K., Matsunaga, S., Coromina, G. & Kanaori, Y. Distributed strike-slip faulting, block rotation, and possible intracrustal vertical decoupling in the convergent zone of SW Japan

Lower crustal flow and topography

Orogenic examples

McClelland, W. C. & Oldow, J. S. Displacement transfer between thick- and thin-skinned décollement systems in the central North American Cordillera

Klepeis, K. A. & Clarke, G. L. The evolution of an exposed mid-lower crustal attachment zone in Fiordland, New Zealand
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>McCaffrey, K. J. W., Grocott, J., Garde, A. A. & Hamilton, M. A.</td>
<td>231</td>
</tr>
<tr>
<td>Attachment formation during partitioning of oblique convergence in the Ketilidian orogen, South Greenland</td>
<td></td>
</tr>
<tr>
<td>Fernández-Fernández, E., Jabaloy, A. & González-Lodeiro, F.</td>
<td>249</td>
</tr>
<tr>
<td>Lower Miocene deformation in the hanging wall of the Internal-External Zone boundary of the Betic Cordillera: deformation at the edges of vertical-axis rotation domains in oblique convergent margins</td>
<td></td>
</tr>
<tr>
<td>Subduction examples – island arcs and marginal basins</td>
<td></td>
</tr>
<tr>
<td>Takeshita, T. & Yagi, K. Flow patterns during exhumation of the Sambagawa metamorphic rocks, SW Japan, caused by brittle–ductile, arc-parallel extension</td>
<td>279</td>
</tr>
<tr>
<td>Fabbri, O., Monié, P. & Fournier, M. Transtensional deformation at the junction between the Okinawa trough back-arc basin and the SW Japan island arc</td>
<td>297</td>
</tr>
<tr>
<td>Melts and crustal rheology</td>
<td></td>
</tr>
<tr>
<td>Vigneresse, J. L. & Burg, J. P. Strain-rate-dependent rheology of partially molten rocks</td>
<td>327</td>
</tr>
<tr>
<td>Index</td>
<td>337</td>
</tr>
</tbody>
</table>
Acknowledgements

This special publication developed out of two symposia: ‘Deformation at Convergent Margins’, convened at the European Union of Geosciences meeting (EUG XI) at Strasbourg in April 2001; and ‘Vertical Coupling and Decoupling at Convergent Margins’ convened at the AGU Fall Meeting in San Francisco in December 2001. We are grateful to all the authors for submitting their work and supporting the volume and we are indebted to our expert panel of reviewers who, through their conscientious work, have ensured the high quality of the volume. We are especially grateful to Dr Stella Bignold (Kingston University) who assisted us in the compilation of this volume.

The panel of reviewers for this volume was:

M. Anderson, University of Plymouth, UK
J.R. Andrews, University of Southampton, UK
T.S. Brewer, University of Leicester, UK
M. Brown, University of Maryland, USA
J.-P. Brun, Université de Rennes 1, France
P. England, University of Oxford, UK
J. van Gool, GEUS, Denmark
K. de Jong, National Taiwan University, Taiwan
H.G.A. Lallemand, Rice University, Houston, USA
S. Lamb, University of Oxford, UK
L. Lonergan, Imperial College, London, UK
B. Murphy, St Francis Xavier University, Nova Scotia, Canada
L. Parson, Southampton Oceanography Centre, UK
C.W. Passchier, Johannes Gutenberg University, Mainz, Germany
B. Pelletier, IRD, New Caledonia
C. Rosenberg, Freie Universität, Berlin, Germany
E. Rutter, University of Manchester, UK
M. de St-Blanquat, Université Paul Sabatier, Toulouse, France
M.K. Savage, Victoria University of Wellington, New Zealand
G. Schreurs, University of Bern, Switzerland
F. Spera, University of California, USA
R. Strachan, Oxford Brookes University, UK
A. Thomassi, University de Montpellier II, France
M. Tolson, Ciudad Universitaria, Mexico
J. Turner, University of Birmingham, UK
O. Vanderhaeghe, Université Henri Poincaré Nancy 1, France
A. Vauchez, University de Montpellier II, France
J.-L. Vigneresse, CREGU, Vandoeuvre-lès-Nancy, France
R.L.M. Vissers, Utrecht University, Netherlands
C. Waters, University of Wisconsin, USA
G.K. Westbrook, University of Birmingham, UK
R. Wintsch, Indiana University, USA