Index

Page numbers in *italics*, e.g. 59, refer to figures. Page numbers in **bold**, e.g. 169, signify entries in tables.

absolute plate motion (APM)
compared to relative plate motion (RPM) 58–60, 59
model 29–30, 29, 30
Acapulco 118, 119
Acátlan 119, 122
Agua Blanca fault (ABF) 67, 172
Aguilas 250
Alicante 250
Almería 250
Alpine fault 96, 199, 200, 209
Amami Sub-basin 300
Amami–Kagoshima Tectonic Line (AKTL) 299
Ammassalik orogenic belt (Am) 233
Animal Basin 67
Anita shear zone 200, 208
Anorituup Kangerlua 233
Arguello fault zone 67
Arrollo Taibena Basin 255
Arsuk 233, 235
Arsuk Bræ 235
Arsuk Fjord 233, 235
Arthur River complex (ARC) 200
Asemi, River 281, 283, 285, 287
Aso, Mount 282
caldera 299
Atenango 122
attachment see coupling of lithospheric layers
Awatere fault 96
Balsas Basin 122
basal traction driven rotation 69
Baza 250
Beartooth Mountains (BT) 179
Beppu Bay 299, 305
Besshi nappe 281, 283, 285, 287
Betic Cordillera, Internal–External boundary hanging
wall deformation 249–250, 273–275
evolution of structures and implications for coupling
and decoupling 273, 274
geological map 250, 255–256, 260
geological setting 250–253
External Zones cross-section 252
pattern of vertical-axis rotations 272–273
regional constraints 271–272
rock successions 253–259
stratigraphy 254
structures 259–271
cross-sections 257–258, 261, 270
poles of bedding 265

Bitterroot extensional complex (BC) 184, 186–187
Borges Havn granite 235
brittle–ductile arc-parallel extension 279, 293–294
brittle deformation in Sambagawa 288
extreme ductile layer, normal thinning and
arc-parallel stretching 288–290
exhumation scenario for Sambagawa 292–293,
293
normal fault development 289, 290
spacial distribution of recrystallized quartz grain
sizes 291
strike-slip displacements 290
uniform shear sense and reversal by late-stage
folding and faulting 290–291
variable strain geometry of exhuming rocks 292
five possible exhumation mechanisms 280
Butsuzo Tectonic Line (BTL) 282, 299
Cádiz 250
California
see also San Andreas fault
absolute plate motion (APM) and relative plate
motion (RPM) 50, 59
Continental Borderland 65–66, 79–80
bending fault termination 76–78, 76
Pacific–North America transform plate boundary
66–68, 67, 68
straight fault termination 69–76, 70
strike-slip fault termination styles 66, 68–78
vertical coupling and decoupling along WTR
boundary 78–79
seismic anisotropy
applicability of models 36–37
comparison between north and south California
35–36
model results 36
northern California 35
shear wave splitting measurements 10
southern California 32–34
shear-wave splitting 50
California, Gulf of 67
Camp Oven Creek (CO) 200
Capas Rojas Formation 266
Cartagena 250
Caswell Sound 199, 200, 209
paragneiss 208
P–T data 201
Cauca 250
Charles Sound 199, 200, 209
INDEX

Cheviot Hills 74
Chichibu metamorphic belt 281, 282
Chilapa 122
Chilpancingo 118, 119, 122
Chilpancingo Basin 122
Chino Hills 68, 75
Chugoku 143
Clarence fault 96
clutch tectonics 41–42, 51–52, 60
 bottom-driven systems 53
 implications 53
 convergence 54, 57
 divergence 54, 56–57
 strike-slip partitioning and homogeneous mantle deformation 58, 58
 transcurrent boundaries 53–56, 54
 relation between crustal and mantle deformation 52
 top-driven systems 52–53
Coacoyula 122
Coast Mountains–Cascades (CMC) batholith belt 169, 170
Coast shear zone (CSZ) 186–187
Cocula 122
Coeur d’Alene 184
Colinet Basin 67
Columbia River embayment (CRE) 179, 186–187
continental crust 313–314, 323
melting 314
 melt segregation mechanisms and scales 314–315
 P–T paths 315
near-isothermal decomposition paths and mechanisms 315–316, 317
buoyancy/diapirism 317, 319
 crustal thinning/collapse 316, 317
erosion 316, 317
exhumation of ultrahigh-pressure rocks 317, 318–319, 318
 folding/buckling 316–318, 317
 low-angle normal faults 316
partial melting in orogens 319
 buoyant return of subducted continental crust 322–323
 isothermal decomposition and migmatic domes 320–322, 321, 322
migmatite diapirs and gneiss domes 319–320
continental tectonics 1
Copalillo 122
Copalillo Basin 122
Córdoba 119, 250
coupling of lithospheric layers 1, 2
 attachment formation during partitioning 231–232, 246
 development of attachment zone 245–246
 Psammite and Pelite Zones 244, 244
analogue modelling
 model construction 124–126, 125, 126
 model results 129–132, 130, 131, 133, 134
 model rheological structure and analogue materials 126–127, 127
 scaling of models 127–129, 128
 qualitative comparison of model results with geology 134–136, 135
 model limitations 132–134
 vertical coupling and decoupling 136
Cuautla 119
Cucamonga fault zone 68
Cuernavaca 118, 119
Cuevas del Ambrosio 268–269
Danell Fjord 233, 237, 239
Daniel, Mount (MD) 200
 P–T data 201, 202
découllements 1–2
 displacement transfer 177–178, 191
 kinematic model 189–190, 189
decoupling of lithospheric layers 1, 2
 diapirism 317, 319
dip-slip fault systems 1
 Doubtful Sound 199
Dozan, River 281, 283, 285, 287
Eastern Gabar Basin 255
Eastern Transverse Ranges, California 92–94, 93, 94
Edgar, Mount (ME) 200
 edge driven rotation 69
Egger 233
Elsinore fault 67
Elysian Park 74
Embalse de Valdeinfierno 262
fast direction polarization 9
Ferrelo fault 67
finite strain-controlled anisotropy 15–16
Fiordland, crustal attachment zone evolution 197–198, 223–226, 225
 crustal structure and geochronology 207
 age of magmatism, crustal melting and high-grade metamorphism 210
 boundaries of high-grade metamorphic belt 207, 208, 209
 geochronological data 203–206
 lithological divisions of magmatic arc 207–210
 structural relationships 210–212
 evolution stage 1 – mafic-intermediate magmatism and partial melting of lower crust 213–215, 214
 evolution stage 2 – melt segregation and transfer mechanisms 215–218
 (a) melt-induced fracture propagation 215–218, 217
 (b) melt accumulation in ductile shear zones 218, 219
 evolution stage 3 – evolving styles of deformation following magmatism and crustal melting 218
(a) steeply dipping sinistral and dextral shear zones 218–219
(b) gently dipping, layer-parallel shear zones 219, 221
(c) steep Indecision Creek and George Sound shear zones 220–223, 222, 223
general setting 198–207
location map 199
P–T data 201–202
space–time correlation of high-grade fabrics 212–213

Foreland batholith belt 168
Fraser–Straight Creek fault (FSC) 186–187

Gabar 255–256
Garlock fault 171
George Sound 199, 200, 209
P–T data 201
steep shear zone 220–223, 222, 223
Guerrero Morelos Platform 122, 123
Gibraltar 250
Goto Islands 299
Goto Sub-basin 299
Grønsvikland 233, 235
Granada 250
Guadalquivir Basin 250
Guadalupe fault zone 67
Guadalupe Microplate 67
Guadalupe Rift 67
Guadix 250

Hikimi 146, 150, 151
fault–slip data 155
Hiroshima City 148, 150
Hitoyoshi Basin 299, 305, 306
Hokkaido 143
Honshu 143, 299
Hope fault 96
Hosgni fault 67
Huajrupan 119
Huiziltepec 122

Igutsaat Fjord 233, 237
Ikermít 235
Indecision Creek 199
steep shear zone 220–223, 222, 223
Intermontane batholith belt 168
Ippatit 233
Ippatit Valley 239
Irish–Shizuoka Tectonic Line (ISTL) 143
Izu Peninsula 143
Izu–Bonin Arc 143

Japan
see also Sambagawa
block rotation and intracrustal vertical decoupling 141–142, 158, 160

fault kinematics 152
age of recent inversion of motion sense 155–156
fault–slip data 154, 155
Plio-Quaternary to present-day kinematics 152–153
pre-Plio-Quaternary kinematics 154, 156
general geology 142–145
tectonic framework 143
SW island arc 297, 310
diffuse extension across south Kyushu 301–307
geodynamical and geological outline 297–301, 299
Okinawa–Kyushu junction area evolution model 307–310
Western Chugoku fault system 145–146, 148
age 152
analogue model similarities 156–158, 157
earthquake focal spheres 153
field occurrence 150–151, 151
formation model 159–160, 159
general geology 142–145
history 234–236
development of attachment zone 245–246
Julianehåb batholith–Psammite Zone boundary 238
west coast structure 236

Kake 146, 150, 151
fault–slip data 155
Kamio, River 281, 283, 285, 287
Kangerluaq 233, 237
Kangerluk 233, 237
Kangerluluk 233, 237
Kanoya Plain 299
Kap Farvel 233, 237
Kap Ivar Huitfeldt 233, 237
Ketilidian orogen, oblique convergence and attachment formation 231–232, 246
Border Zone structure
Border Zone–foreland boundary relationships 234, 235
history 234–236
development of attachment zone 245–246
Julianehåb batholith structure
Border Zone–Julianehåb batholith boundary 236, 237
east coast structure 236–238
west coast structure 236
major components 232, 233
Border Zone 232
Julianehåb batholith 232–234
Psammite and Pelite Zones 234
Psammite and Pelite Zones
Julianehåb batholith—Psammite Zone boundary 238
nature and timing of structural and metamorphic
events 240
rapakivi suite 240–241
structure 238–240, 239
tectonic evolution 241, 242
construction and deformation of Julianehåb
batholith 244
development of mid-crustal attachment structure
in Psammite and Pelite Zones 244, 244
rapakivi granite intrusion 244
structural histories 241, 243
Kettle extensional complex (KC) 179
Kikai Caldera 299
Kobberminebugt 233, 235, 243
Koshiki Islands 299
Kumamoto 282
Kyushu 143, 299
diffuse extension across southern regions 301,
305–307
Beppu region 305
Hitoyoshi–Ichifusa region 305, 306
Osumi region 301–305, 302, 303, 304, 305
geological structure 301
Okinawa–Kyushu junction area evolution model
accomodation of extension through reactivation of
thrust faults 307
cross-section model 307–310, 309
perpendicular extention 308
transstension in northern region 307
Laramide shortening, vertical coupling controlled by
crustal heterogeneity 117–121, 137
lattice prefered orientation (LPO), olivine 3, 15
deformation types 55
mantle fabric observations 42–43, 44
Lewis and Clark lineament (LCL) 179, 184, 186–187
Lindonow Fjord 233, 237, 239
lithosphere, idealized deformation diagrams 54
Los Angeles 68
faults and seismicity 75
Los Angeles Basin 74
Málaga 250
Manapouri, Lake 199
mantle-driven deformation of orogenic zones 41–42,
60
crustal deformation and mantle fabric
ancient orogens 48
interpretation of data 49–51
neotectonic orogens 49
strain history 51
lithosphere/asthenosphere connections
continental settings 47–48
cratons 46
oceanic settings 46–47, 47
lithospheric deformation 42
mantle fabric
laboratory experiments 43
numerical experiments 43–45
olivine LPO and shear-wave splitting 42–43, 44
mantle viscosity and seismic attenuation 45–46
Marbella 250
Maria 255–256, 260
Marlborough fault system, South Island, New Zealand
94–95, 96
Masuda City 148
Median Tectonic Line (MTL) 142, 143, 148, 282, 285,
299
Mexico, Caribbean–North American transform
boundary 117–120, 137
analogue modelling of Late Cretaceous to Early
Tertiary deformation
model construction 124–126, 125, 126
model results 129–132, 130, 131, 133, 134
model rheological structure and analogue
materials 126–127, 127
scaling of models 127–129, 128
gistorical and tectonic setting
early Tertiary deformation 121–123, 122, 123
Laramide deformation 120–121
Tertiary deformation 124
lithological units 119
quantitative comparison of model results with geology
134–136, 135
model limitations 132–134
vertical coupling and decoupling 136
terrane boundaries 118
Midtermes 233, 235
Milford 200
Milford Sound 199, 200, 209
P–T data 201, 202
Missoula 184
Mixteco Terrane 122
Mixteco–Oaxaca–Juarez block (MOJB) 120, 121
Early Tertiary deformation 121–123, 122
Laramide deformation 120–121
Tertiary deformation 124
Mogens Heinesen Fjord 233, 235
Montana disturbed belt (MDB) 179
Monterey fault zone 67
Monterey Microplate 67
Morro fault zone 67
mountain belts 1
Murcia 250
Nagssugtoqidian orogenic belt (Nag) 233
Nankai Trough 143, 299
Nanortalik 233
Napasorsuaq Fjord 233, 235, 237
New Zealand
absolute plate motion (APM) and relative plate motion (RPM) 50
seismic anisotropy 9–13, 31–32, 32–34
applicability of models 36–37
model results 36
modelling results 16–31, 17, 18–19, 20–21, 22
shear wave splitting measurements 10
study methods 13–16, 13
shear-wave splitting 50
Newport–Inglewood fault zone 68, 74–76
Niaqornaarsuk 233
Nobeoka Tectonic Line (NTL) 299
Nørrearm 233, 239
North American Cordillera 167–168, 168
crustal architecture 178–183
cross-sections 181–182
crustal thickening and deep flow 173–174
crustal thickening and unroofing 168–169
Central Cordillera 169–170
Northern Cordillera 169, 170
Southern Cordillera 170–171
displacement transfer in décollement systems 177–178, 185–187, 191
generalized tectonic map 179
Late Cretaceous–Tertiary structural elements 186–187
oblique ramp system in Idaho–Montana basement 183–185, 184
coupling v. decoupling 190–191
influence on strike-slip systems 188
influence on Tertiary extensional systems 188–189
kinematic model for linked décollement system 189–190, 189
regional expression 187–188
plateaux 171–172
unroofing mechanisms 172–173
Nunnarsuit 233
Oaxaca 118, 119
Oboke nappe 281, 283, 285, 287
Oita 282
Oita–Kumamoto Tectonic Line (OKTL) 282
Okanagan extensional complex (OC) 179
Okinawa trough back-arc basin 297, 310
diffuse extension across south Kyushu 301, 305–307
Beppu region 305
Hitoyoshi–Ichifuza region 305, 306
Osumi region 301–305, 302, 303, 304, 305
geodynamical and geological outline 300
cross-section 300
Kyushi geological structure 301, 302, 303, 304, 305
present-day plate configuration and recent evolution 297–298, 299
structure 298–301
Okinawa–Kyushu junction area evolution model 307
accommodation of extension through reactivation of thrust faults 307
cross-section model 307–310, 309
perpendicular extension 308
transpression in northern region 307
Olinala 122
olivine lattice preferred orientation (LPO) see lattice preferred orientation (LPO), olivine
Omineca batholith belt 168
Omineca–Sevier batholith belt 168
Orizaba 118, 119
Orofino shear zone (OSZ) 179, 184, 186–187
orogenic float 1
orogenic zones, mantle-driven deformation 41–42, 60
crustal deformation and mantle fabric 48
ancient orogens 48
interpretation of data 49–51
neotectonic orogens 49
strain history 51
lithosphere/asthenosphere connections 47–48
continental settings 47–48
orogens 46
oceanic settings 46–47, 47
lithospheric deformation 42
mantle fabric 43
laboratory experiments 43
numerical experiments 43–45
olivine LPO and shear-wave splitting 42–43, 44
mantle viscosity and seismic attenuation 45–46
Osburn fault 184
Oshima 282
Osumi Peninsula 299, 301–305
ages of pseudotachylite veins 303, 304, 305
cross-section of Osumi pluton 302
general expression 300
Otte Rud Oer 235
Oxnard 71
Oztotilán Basin 122
Paatusoq 233, 237
Palos Verdes fault zone 68, 76–77
Papalutla 118
Papalutla Thrust 122
Patton Escarpment 67
Patton Ridge 67
Pembroke Valley (P) 200
P–T data 201, 202
Peninsular Ranges batholith (PRB) batholith belt 169, 172
Pinchi fault (PI) 186–187
Poison Bay 200
P–T data 201, 202
Priest River extensional complex (PC) 179, 184
Pruitt Christian Sund 233, 237
Puebla 118, 119
Puente Hills 75
Puerto Angel 118, 119
Puisortoq 233, 235
Puisortoq Fjord 235
Qaqortoq 233
Qernertoq 233, 237
Qornoq 235
Rambla Seca Basin 255, 262
cross-section 263
Raymond fault 68, 75
relative plate motion (RPM), compared to absolute plate motion (APM) 58–60, 59
rheology of partially molten rocks, strain-rate dependency 327–328, 334
basic rheological laws 328–329, 329
bulk response to low strain rates 332
bulk response to tectonic stress 331–332, 332
melt segregation at outcrop scale 333, 333
melt segregation within a vein 333–334, 333
pseudo-fluids 329–330, 330
two-phase materials 330–331
viscosity determination 334
Ryoke metamorphic belt 281, 282
Ryukyu Arc 299
Sakamoto antiform 281
Salina Cruz 119
Salton Trough 67
Sambagawa, flow patterns during exhumation of metamorphic rocks 279, 293–294
extreme ductile layer, normal thinning and arc-parallel stretching 288–290
exhumation scenario 292–293, 293
normal fault development 289
normal fault stereographs 290
spacial distribution of recrystallized quartz grain sizes 291
strike-slip displacements 290
uniform shear sense and reversal by late-stage folding and faulting 290–291
variable strain geometry of exhuming rocks 292
five possible exhumation mechanisms 280
general geological 280–282, 281
general geological map 282
study results 283
3D strain geometries 284–288, 284–285, 286
brittle deformation 288
mesoscopic structures 282–284, 283
shear sense distribution 287
San Andreas fault (SAF) 67
absolute plate motion (APM) and relative plate motion (RPM) 59
seismic anisotropy 9–13
Absolute Plate Motion (APM) model 29–30, 29, 30
modelling results 16–31, 17, 18–19, 20–21, 22
Pacific plate viscosity 29
shear wave splitting measurements 10
study methods 13–16, 13
symmetric weak fault model 23–25, 24–26, 24
San Benito fault 67
San Clemente fault 67, 70–73
aeromagnetic anomaly map 71
faults and seismicity in the Santa Barbara Channel area 73
seismic reflection profile 72
San Clemente Island 71
San Diego 68
San Fernando fault zone 75
San Gabriel fault 67, 68, 75
San Gregorio fault 67
San Isidro fault 67
San Jacinto fault 67
San Nicolas Island 71
San Pedro Basin 74
San Pedro Basin fault zone 73–74, 74
San Pedro Bay 74
San Quentin Basin 67
Santa Barbara 68
Santa Barbara Basin 71
Santa Barbara Channel 72–73
faults and seismicity 73
Santa Barbara fault 71
Santa Barbara Island 71
Santa Catalina Island 71
Santa Cruz Basin 67
Santa Cruz Island 71, 73
Santa Cruz–Catalina Ridge 71, 73
Santa Lucia fault 67
Santa Monica Basin 71, 74
Santa Monica Bay 74
Santa Monica–Hollywood fault zone 68
Sähröge shear zone 233
Saruta, River 281, 283, 285, 287
Sättikujj extrusive granite 235
seismic anisotropy
New Zealand and California 9–13, 31–37, 32–34
applicability of models 36–37
comparison between northern and southern California 35–36
compression 34–35
modelling results 16–31, 17, 18–19, 20–21, 22, 36
study methods 13–16, 13
two-layer anisotropy 12
seismic attenuation 45–46
Sermilagaarsuk 233
Serreta de Guadalupe 255–256, 262
Seto Inland Sea 144, 148, 149, 281
Sevier batholith belt 168
Sevilla 250
shear-wave splitting 3
as a function of wave polarization 23
California 10, 50
changing depth to isotropy/anisotropy boundary 14
crustal block rotation by mantle flow 90–91
evolution of parameters 22
mantle fabric observations 42–43, 44
New Zealand 10, 50
oceanic material 46–47, 47
San Andreas fault (SAF) 10
Tibet 50
Trinidad 50
Venezuela 50
Shikoku Island 143, 281, 299
Shikoku–western Honshu region, Japan 144
Shimanto metamorphic belt 281, 282
Shimanto Terrane 306
Shimbara Peninsula 299
Shimokawa, River 281, 283, 285, 287
Shiraga, Mount 281
Shuswap extensional complex (SC) 179, 186–187
Sierra Nevada 10
Sierra del Gigante 255–256
Sierra del Maimon 255–256
Sierra del Pericay 255–256, 262
Sierra Larga 255–256
Sierra Madre fault zone 68, 75
Sierra Nevada (SN) batholith belt 169, 171
Sierra San Pedro Martir (SSPM) 172
Sikhote–Alin fault system 143
SKS phases 9–10
Snake River plain (SRP) 179
Snow Peak 184
Solana Formation 260
Søndre Igaliku 233
Søndre Sermilik 233, 243
Sorte Nunaq 233
Southern Japan Sea fault zone (SJSFZ) 143
strain gradients 101, 112–114
attachment tectonics 101–103, 102
modelling 103–104, 103, 104
transpression and transtension attachments 107–108, 109–112, 110, 113
transpression attachments 108–109, 111
transtension attachments 109, 112
wrench attachments 104–105, 105–107, 106, 107, 108, 109, 110
foliation and lineation patterns 105
strain modelling 9–13
California
applicability of models 36–37
comparison between north and south California 35–36
model results 36
northern California 35
southern California 32–34
New Zealand 31–32, 32–34
applicability of models 36–37
model results 36
results 16
effect of viscosity structure 22–30
other flow models 30–31
relative plate motion with isoviscous model 16–22, 17, 18–19, 20–21, 22
study methods 13–14
changing depth to isotropy/anisotropy boundary 14
model parameters 13
relation between deformation parameters and anisotropy 15–16
strike-slip fault systems 1
applicability of models 36–37
block rotation and intracrustal vertical decoupling 141–142, 158, 160
California
comparison between north and south California 35–36
northern California 35
southern California 32–34
coupling at boundaries 9–13
modelling results 16–31, 17, 18–19, 20–21, 22
study methods 13–16, 13
model results 36
New Zealand 31–32, 32–34
partitioning 58, 58
termination at convergence zones 65–66, 79–80
bending fault termination 76–78, 76
Pacific–North America tranform plate boundary 66–68, 67, 68
straight fault termination 69–76, 70
termination styles 66, 68–78
vertical coupling and decoupling along WTR boundary 78–79
Tanakura Tectonic Line (TTL) 143
Tanegashima Island 299
Tasermiut 233
tectonic processes, implications of clutch tectonics 53
convergence 54, 57
divergence 54, 56–57
strike-slip partitioning and homogeneous mantle deformation 58, 58
transcurrent boundaries 53–56, 54
Tehuacán 119
Tehuantepec 119
Tehuantepec, Gulf of 118
Tibet
absolute plate motion (APM) and relative plate motion (RPM) 50
lithospheric deformation 51
shear-wave splitting 50
Tintina fault (TI) 186–187
Tixtla 122
Tokara Line 299
Tokara Ridge 299, 300
Tokara Sub-basin 299, 300
Toluca 118
transpressional zones 2
transpressional/transessional attachment zones, strain
gradients 101, 107–108, 109–112, 110,
112–114, 113
attachment tectonics 101–103, 102
modelling 103–104, 103, 104
transpression attachments 108–109, 111
transtension attachments 109, 112
wrench attachments 104–105, 105–107, 106, 107,
108, 109, 110
foliation and lineation patterns 105
transtensional deformation 297–310
Okinawa–Kyushu junction area evolution model
accomodation of extension through reactivation of
thrust faults 307
cross-section model 307–310, 309
northern region 307
perpendicular extention 308
Trinidad
absolute plate motion (APM) and relative plate
motion (RPM) 50, 59
shear-wave splitting 50
Tsuyama synform 281, 283
Tsushima fault system (TFS) 143
Tulimán 122
Tunua 235
Tuzantán Basin 122
Vélez Blanco 255–256, 260
Vélez Rubio 255–256
Venezuela
absolute plate motion (APM) and relative plate
motion (RPM) 50
shear-wave splitting 50
Verdugo fault zone 75
vertical axis rotations 3–4, 83–85, 84, 97–98
assumptions and applicability of model 97
Betic Cordillera 249–250, 273–275
evolution of structures and implications for
coupling and decoupling 273, 274
geological map 250, 255–256, 260
geological setting 250–253, 252
pattern of vertical-axis rotations 272–273
regional constraints 271–272
rock successions 253–259, 254
structures 257–258, 259–271, 261, 262, 264,
265, 270
rigid rotations
application to attachment/detachment zones 92
boundary conditions and background 85–87, 85,
86, 87
experimental apparatus and design 87–89, 88,
89
experimental results 89, 90, 91
mantle deformation in obliquely convergent
environments 91–92
natural systems 89–92
shear-wave splitting 90–91
side-driven v. bottom-driven systems 95–97
upper crustal rotation coinciding with mantle
deformation 92, 94, 95
Eastern Transverse Ranges, California 92–94, 93,
94
Marlborough fault system, South Island, New Zealand 94–95, 96
Western Transverse Ranges (WTR), California 69
vertical coupling in the lithosphere
channel flow 5
géophysical constraints
shear wave splitting 3
vertical axis rotations 3–4
island arcs and marginal basins 4–5
orogenic belts and exposed attachment zones 4
viscosity and strain modelling
effect of viscosity structure 22–23
Absolute Plate Motion (APM) model 29–30, 29,
30
asymmetric viscosity models 25–28, 27–28
effect of increasing compression component
28–29, 29
symmetric weak fault model 23–25, 24–26, 24
isoviscous model 16–22, 17, 18–19, 20–21, 22
Vizcaino Peninsula 67
western Idaho shear zone (WISZ) 179, 186–187
Western Metamorphic Belt (WMB) 171
western Nevada shear zone (WNSZ) 186–187
Western Transverse Ranges (WTR), California 66–69,
67, 79–80
clockwise vertical-axis rotation mechanisms 69
strike-slip fault termination styles 68–69
bending fault termination 76–78, 76
straight fault termination 69–76, 70
vertical coupling and decoupling along boundary 78
basal shear-driven block rotation 79
edge-driven block rotation 78–79
Wind River Mountains (WR) 179
wrench attachments 104–105
foliation and lineation patterns 105
strain gradients 105–107, 106, 107, 108, 109, 110
Xochipala 122
Yakushi antiform 281, 283
Yakushima Island 299
Yangsan fault system (YFS) 143
Yanhuatan 118
Yoshiwara 146
Zarcilla de Ramos 255–256
Zarcilla de Ramos Basin 255
Zihuatanejo 118
Zitlala 122
Zumpango 122