The Timing and Location of Major Ore Deposits in an Evolving Orogen
Special Publication reviewing procedures

The Society makes every effort to ensure that the scientific and production quality of its books matches that of its journals. Since 1997, all book proposals have been refereed by specialist reviewers as well as by the Society’s Books Editorial Committee. If the referees identify weaknesses in the proposal, these must be addressed before the proposal is accepted.

Once the book is accepted, the Society has a team of Book Editors (listed above) who ensure that the volume editors follow strict guidelines on refereeing and quality control. We insist that individual papers can only be accepted after satisfactory review by two independent referees. The questions on the review forms are similar to those for Journal of the Geological Society. The referees’ forms and comments must be available to the Society’s Book Editors on request.

Although many of the books result from meetings, the editors are expected to commission papers that were not presented at the meeting to ensure that the book provides a balanced coverage of the subject. Being accepted for presentation at the meeting does not guarantee inclusion in the book.

Geological Society Special Publications are included in the ISI Index of Scientific Book Contents, but they do not have an impact factor, the latter being applicable only to journals.

More information about submitting a proposal and producing a Special Publication can be found on the Society’s web site: www.geolsoc.org.uk.

It is recommended that reference to all or part of this book should be made in one of the following ways:

GEOLOGICAL SOCIETY SPECIAL PUBLICATION NO. 204

The Timing and Location of Major Ore Deposits in an Evolving Orogen

EDITED BY

D. J. BLUNDELL
Royal Holloway, University of London, UK

F. NEUBAUER
University of Salzburg, Austria

and

A. VON QUADT
ETH-Z, Zurich, Switzerland

2002
Published by
The Geological Society
London
The Geological Society of London (GSL) was founded in 1807. It is the oldest national geological society in the world and the largest in Europe. It was incorporated under Royal Charter in 1825 and is Registered Charity 210161. The Society is the UK national learned and professional society for geology with a worldwide Fellowship (FGS) of 9000. The Society has the power to confer Chartered status on suitably qualified Fellows, and about 2000 of the Fellowship carry the title (CGeol). Chartered Geologists may also obtain the equivalent European title, European Geologist (EurGeol). One fifth of the Society’s fellowship resides outside the UK. To find out more about the Society, log on to www.geolsoc.org.uk.

The Geological Society Publishing House (Bath, UK) produces the Society’s international journals and books, and acts as European distributor for selected publications of the American Association of Petroleum Geologists (AAPG), the American Geological Institute (AGI), the Indonesian Petroleum Association (IPA), the Geological Society of America (GSA), the Society for Sedimentary Geology (SEPM) and the Geologists’ Association (GA). Joint marketing agreements ensure that GSL Fellows may purchase these societies’ publications at a discount. The Society’s online bookshop (accessible from www.geolsoc.org.uk) offers secure book purchasing with your credit or debit card.

To find out about joining the Society and benefiting from substantial discounts on publications of GSL and other societies worldwide, consult www.geolsoc.org.uk, or contact the Fellowship Department at: The Geological Society, Burlington House, Piccadilly, London W1J 0BG: Tel. +44 (0)20 7434 9944; Fax +44 (0)20 7439 8975; E-mail: enquiries@geolsoc.org.uk.

For information about the Society’s meetings, consult Events on www.geolsoc.org.uk. To find out more about the Society’s Corporate Affiliates Scheme, write to enquiries@geolsoc.org.uk.

Published by The Geological Society from:
The Geological Society Publishing House
Unit 7, Brassmill Enterprise Centre
Brassmill Lane
Bath BA1 3JN, UK
(Orders: Tel. +44 (0)1225 445046
Fax +44 (0)1225 442836)
Online bookshop: http://bookshop.geolsoc.org.uk

The publishers make no representation, express or implied, with regard to the accuracy of the information contained in this book and cannot accept any legal responsibility for any errors or omissions that may be made.

© The Geological Society of London 2002. All rights reserved. No reproduction, copy or transmission of this publication may be made without written permission. No paragraph of this publication may be reproduced, copied or transmitted save with the provisions of the Copyright Licensing Agency, 90 Tottenham Court Road, London W1P 9HE. Users registered with the Copyright Clearance Center, 27 Congress Street, Salem, MA 01970, USA: the item-fee code for this publication is 0305-8719/02/$15.00.

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library.

Typeset by Keytec Typesetting Ltd., Bridport, Dorset, UK.
Printed by Antony Rowe, Chippenham, UK
Contents

Preface vii

General issues 1

BLUNDELL, D.J. The timing and location of major ore deposits in an evolving orogen: the geodynamic context

Modern orogenic systems 39

BARLEY, M.E., RAK, P. & WYMAN, D. Tectonic controls on magmatic–hydrothermal gold mineralization in the magmatic arcs of SE Asia

MACPHERSON, C.G. & HALL, R. Timing and tectonic controls in the evolving orogen of SE Asia and the western Pacific and some implications for ore generation

LIPS, A.L.W. Correlating magmatic–hydrothermal ore deposit formation over time with geodynamic processes in SE collision Europe

NEUBAUER, F. Contrasting Late Cretaceous with Neogene ore provinces in the Alpine–Balkan–Carpathian–Dinaride collision belt

MARCHEV, P. & SINGER, B. 40Ar/39Ar geochronology of magmatism and hydrothermal activity of the Madjarovo base–precious metal ore district, eastern Rhodopes, Bulgaria

KROHE, A. & MPOSKOS, E. Multiple generations of extensional detachments in the Rhodope Mountains (northern Greece): evidence of episodic exhumation of high-pressure rocks

Older orogenic systems 103

BONI, M., MUCHEZ, P. & SCHNEIDER, J. Permo-Mesozoic multiple fluid flow and ore deposits in Sardinia: a comparison with post-Variscan mineralization of Western Europe 151

179

199
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cune, M., Alexandrov, P., Le Carlier de Vslud, C., Cheilletz, A.,</td>
<td>213</td>
</tr>
<tr>
<td>Raimbault, L., Ruffet, G. & Scaillet, S. The timing of W–Sn–rare</td>
<td></td>
</tr>
<tr>
<td>metals mineral deposit formation in the Western Variscan chain in</td>
<td></td>
</tr>
<tr>
<td>their orogenic setting: the case of the Limousin area (Massif Central,</td>
<td></td>
</tr>
<tr>
<td>France)</td>
<td></td>
</tr>
<tr>
<td>Jurkovič, I. & Palinkas, L. Discrimination criteria for assigning</td>
<td>229</td>
</tr>
<tr>
<td>ore deposits located in the Dinaridic Palaeozoic–Triassic formations</td>
<td></td>
</tr>
<tr>
<td>to Variscan or Alpidic metallogeny</td>
<td></td>
</tr>
<tr>
<td>Oukarou, S. Example of a structurally controlled copper deposit from</td>
<td></td>
</tr>
<tr>
<td>the Hercynian western High Atlas (Morocco): the High Seksaoua mining</td>
<td></td>
</tr>
<tr>
<td>district.</td>
<td></td>
</tr>
<tr>
<td>Yakubchuk, A. The Baikalide–Altaid, Transbaikal–Mongolian and North</td>
<td>273</td>
</tr>
<tr>
<td>Pacific orogenic collages: similarity and diversity of structural</td>
<td></td>
</tr>
<tr>
<td>patterns and metallogenic zoning</td>
<td></td>
</tr>
<tr>
<td>Fridovsky, V. Yu. & Prokopiev, A.V. Tectonics, geodynamics and gold</td>
<td>299</td>
</tr>
<tr>
<td>mineralization of the eastern margin of the North Asia Craton</td>
<td></td>
</tr>
<tr>
<td>Stein, H.J. & Bingen, B. 1.05–1.01 Ga Sveconorwegian metamorphism</td>
<td>319</td>
</tr>
<tr>
<td>and deformation of the supracrustal sequence at Sæsvatn, South</td>
<td></td>
</tr>
<tr>
<td>Norway: Re–Os dating of Cu–Mo mineral occurrences</td>
<td></td>
</tr>
<tr>
<td>Rajavuori, L. & Kriegsmann, L.M. Fluorine in orthoamphibole</td>
<td>337</td>
</tr>
<tr>
<td>dominated Zn–Cu–Pb deposits: examples from Finland and Australia</td>
<td></td>
</tr>
</tbody>
</table>
Preface

When asked in 1996 what he thought was the major problem in geology still unresolved, Professor Rudolph Trümpy replied 'find the connection between mountain building processes and ore deposit formation'. His remark inspired the European Science Foundation to set up a five-year scientific programme in 1998 to investigate geodynamics and ore deposit evolution, GEODE, on a European scale. The GEODE programme was organised into five main projects, based on metallogenic provinces in Europe, supplemented by studies of metallogeny in the tectonically active regions of South America and the SW Pacific. A global comparison of major volcanic-hosted massive sulphide (VMS) deposits was also initiated. Metallogenesis has been related to geodynamic processes operating on a wide range of scales in space and time, involving large-scale processes conducive to the generation of magmatic and mineral fluids within the lithosphere–asthenosphere system, processes transporting and transforming those fluids through interactions with their surroundings in an ever changing thermal and pressure regime, and processes concentrating and depositing metals within the ore deposit regime progressively over time. To gain an understanding of these processes it is essential to examine them where they have been recently, or are currently, active and where information about the structure and characteristic properties of the lithosphere, and how they are evolving, can be gained from geophysical, geochemical, geochronological and other observations. As a consequence of previous European Science Foundation programmes, such as the European Geotraverse and EUROPROBE, the properties, structure and evolutionary history of the lithosphere of Europe is better known than almost anywhere else in the world. Metallogenic provinces in Europe range in time from the Archaean–Early Proterozoic to the Palaeozoic, to the Cenozoic and, in particular, in the active region of the Alpine–Balkan–Carpathian–Dinaride (ABCD) belt, to the Neogene. The latter, in comparison with the regions of South America and the SW Pacific, affords the opportunity to investigate metallogeny in a variety of modern tectonic contexts.

The contents of this book reflect these ideas. They are based on a symposium organised by GEODE and SGA (Society for Geology Applied to Mineral Deposits) held during the European Union of Geosciences Assembly in March 2001 entitled 'the timing and location of major ore deposits in an evolving orogen'. Although the majority of papers relate to Europe, their findings have a global significance for metallogenesis. Figure 1 provides a key to their locations. An introductory paper by Blundell to set the scene is followed by an account by Allen & Weihed of global comparisons of VMS districts from the first findings of a new international project. They conclude that the main VMS ore deposits take less than a few million years to form and generally occur near the top of a succession of felsic volcanic rocks within an extensional environment. A series of papers then examine various aspects of modern orogenic systems, starting with two (Barley et al. and Macpherson & Hall) on the SE Asia/SW Pacific region that demonstrate the speed of tectonic processes and the short duration of magmatic and mineralizing events. The latter are shown to relate to transient effects in a subduction complex, often through plate reorganization, rather than to steady state subduction. Changes in the balance between recycled fluxes of slab-derived fluid and sediment melt exert an important control on the chemical composition of arc lavas and, consequently, on their content of economically important metals. Arc-related magmatism in unusual tectonic settings produced the most abundant and largest deposits in SE Asia, the vast majority of which have formed since 5 Ma. It appears that whilst the timing of magmatic and metallogenetic events can be explained in relation to tectonic changes, it is much more difficult to explain the tectonic controls on the locations of ore deposits. Papers by Lips and Neubauer identify the connections between collisional tectonics and ore deposit evolution in SE Europe and the ABCD belt, particularly relating to slab rollback in earlier stages and slab tear and detachment subsequently. Lips points out that roll-back of subducted lithosphere, restoration of orogenic wedge geometry and slab detachment are all scenarios that favour extension and the transfer of heat to relatively shallow lithospheric levels. Within the context of near-continuous subduction in the ABCD region over the past 100 Ma, Neubauer recognizes two periods of short-lived, late-stage collisional events that led to calc-alkaline magmatism and mineralization, in the Late Cretaceous and Oligocene–Neogene. In both periods, the type of mineralization and its timing changes progressively along the strike of the magmatic/metallogenic belt, which Neubauer links with the process of lithospheric slab tear observed independently in the
Fig. 1. Key maps showing general locations relating to the papers. (a) World map: 1, Blundell; 2, Allen & Weihe; 3, Barley et al.; 4, Macpherson & Hall; 15, Chauvet et al.; 16, Yakubchuk; 17, Fridovsky & Prokopiev. (b) Map of Europe: 5, Lips; 6, Neubauer; 7, Amann et al.; 8, von Quadt et al.; 9, Marchev & Singer; 10, Krohe & Mposkos; 11, Tornos et al.; 12, Boni et al.; 13, Cuney et al.; 14, Jurković & Palinkaš; 18, Stein & Bingen; 19, Rajavuori & Kriegsman.
area from seismic tomography and other evidence. Papers by Amann et al. and von Quadt et al. explain the timing and genesis of specific ore deposits in the Eastern Alps and the Bulgarian Srednogorie zone of the Carpathians, respectively. Amann et al. examine late-tectonic gold mineralization of Oligocene–Miocene age related to a complex transtensional shear regime of conjugate strike-slip faults. Von Quadt et al. use high precision U–Pb dating of individual zircons from dykes bracketing the time of formation of the Elatsite porphyry Cu–Au deposit to demonstrate that the high-temperature ore forming process was constrained to a very short period within the Late Cretaceous collisional event, between 92.1 ± 0.3 and 91.84 ± 0.31 Ma ago. A paper by Marchev & Singer looking at the timing and nature of magmatism and hydrothermal activity in the eastern Rhodope region is complemented by an analysis of the structural evolution of the Rhodope mountains by Krohe & Mposkos. Marchev & Singer show how short the duration of volcanism and hydrothermal activity can be in a single ore district. They find that volcanism in the Madjarovo volcanic complex and ore district in Bulgaria began at 32.7 Ma and finished by 32.2 Ma, at which time the hydrothermal activity and fault-controlled base/precious metal mineralization occurred. This happened during a period, shown by Krohe & Mposkos, when the Rhodope region suffered pervasive deformation and granitoid intrusion, being uplifted, extended and exhumed through a series of inter-linked detachment faults.

Turning to older orogenic systems, one of the world’s major metallogenic provinces is the Iberian Pyrite Belt of Southwest Iberia. Cnney point the timing of deformation and metamorphic processes associated with the formation of the Variscan belt, possibly due to lithosphere delamination. Jurković & Palinkaš tackle the task of discriminating between Variscide or Alpide (Triassic) origins of ore deposits in the Dinarides, in Palaeozoic and Permo–Triassic allochthonous units thrust over Mesozoic–Palaeogene rocks during Alpine deformation. With radiometric dating not possible, they successfully developed a package of discriminatory criteria, involving (34S isotope values, SrSO4 content and fluid inclusion properties. Chauvet et al. explain the structural controls on copper mineralization in the High Atlas of Morocco, a southerly extension of the Variscides to north Africa. They relate the mineralization to a ductile tectonic event associated with granite emplacement some 20 Ma earlier. To the east, and on a grand scale, the formation of very large ore deposits in relation to the evolution of orogenic collages across eastern Asia through the Mesozoic and Cenozoic is explained by Yakubchuk. He is able to demonstrate that the timing of mineralization is related to plate reorganization and oroclinal bending of magmatic arcs. Interestingly, the location of major gold deposits is correlated with marine shelf and platform sequences containing black shales. Complementing this work is a paper by Fridovsky & Prokopiev describing gold mineralization on the eastern margin of the north Asia craton, an area rich in black shales.

Stein & Bingen demonstrate the immense value of Re–Os dating techniques for obtaining direct information about the ages of mineral occurrences in southern Norway, which enable them to pinpoint the timing of deformation and metamorphic change associated with the mineral occurrences to a duration of just 30 Ma, between 1047 and 1017 Ma. The strength of their approach, as they say, is that ‘small ore occurrences in molybdenum-endowed regions of the Earth’s crust are capable of unleashing important age information that bears on the metamorphic history and tectonic assembly of major orogens’. Finally, Rajavuori & Kriegsman point out the role of fluorine as a pathfinder in metamorphic hydrothermal volcanogenic massive sulphides. Their study of F in Zn–Cu–Pb deposits in Finland and Australia examines the role of F in the fluid transport system of magmatic–hydrothermal ore formation.

The overall conclusion to be drawn from this collection of papers is that ore formation in magmatic–hydrothermal systems occurs over a short period of time, probably less than a million years, usually at or close to the end of a magmatic event. The timing relates to a transient effect of plate reorganization, which creates heat and a particular style of magmatism conducive to the generation of mineralizing fluids. Specific scenar-
The location of ore deposits is difficult to pinpoint but is often controlled by localized extensional structures developed within a regional transpressional regime. But what controls the amount of mineralization produced and what determines where it is concentrated into very large ore deposits remain obscure.

D. Blundell,
F. Neubauer
& A. von Quadt