Index

Abakan-Chernogorsk region, Khakassia, Siberia, alkaline coal mine drainage 287–90
analysis of drinking water at Byelii Yar opencast mine 290
properties of typical coals from Minusinskii 289
sampling and analysis methods 288
Abaza Magnetic Mine, Khakassia, Siberia, alkaline coal mine drainage 287–8, 290–1
chemical composition of pumped water 291
sampling and analysis methods 288
acid mine drainage
Carnoulès, France, arsenic 267–74
South Nottinghamshire Coalfield closure 99–104
acid–base accounting (ABA) 145
acidic spoil drainage
acidity values 252
Cleveland Ironstone Field 260–2
vestigial/juvenile acidity 139, 205
Adrio Valley, SW Spain, Aznalicollar mine spill 187–204
Aitik mine, Sweden, mineral weathering rate prediction 151–5
albite weathering 153–5
reactive surface area at field scale 143
alkaline coal mine drainage
Siberia
Abakan–Chernogorsk region 287–90
Abaza Magnetic Mine 287–8, 290–1
Vershina Tyulai Magnetic Mine 287–8, 291–2
Svalbard, Longyearbyen 287–8, 292–5
Altiplano aquifer complex, Bolivia 215–39
anorthite weathering 153–5
reactive surface area at field scale 143
aquifers overlying coal mines 17–45
hydraulic head drops 20–3
hydraulic tests 28–30, 34–5
transmissivities 22–3
water level recovery 23–4
see also longwall coal mining (UK and USA)
Arctic region see Longyearbyen, Svalbard
arsenic
acid mine drainage system, removal by oxidizing bacteria 267–74
mine pit lakes 163
potable water limits 335
Spain, NW, Mieres, Asturias, pollution from mercury and coal mine spoil in Morgao catchment 327–36
Aznalicollar see Spain, SW
bacteria, arsenic removal 267–74
base flow index (BFI) 130
berthierine 254
biotite weathering 151–5
reactive surface area at field scale 143
Black Clough discharge, Deerplay Colliery see Lancashire, UK
Bolivia (San Jos, Mine, Oruro), contaminant sources 215–39
cross-section and site 218
geological and hydrogeological setting 219–23
bedrock 219
chloride concentrations 220
contour maps of aquifer complex 220, 222
sedimentary complex 219–23
groundwater chemistry in wells 237
mine water hydraulics 223–8
ingress of surficial waters 224
MIFIM model 223–6
mine flooding modelling 224–7
MODFLOW model, ground water leakage, flooded mine 223–8
possible water outflows 224
void distribution 223
water influxes/inf lows 223–4
mine water quality 228–33
composition of pumped mine water at Santa Rita entrance 230–1
hydrochemical characteristics 228–9
results of analyses of water 232
speciation modelling 229–32
pumping rates from mine 219
risk assessment 234–6
leachate analyses 235
map of copper concentrations 236
mine wastes 233–4
risk source characterization 234
secondary mineral efflorescences 234
Canterian zone, map 330
Carnoulès, Gard see France
chalcopyrite weathering 147–55
reactive surface area at field scale 143
chamosite 254
chemical stratification, mine pit lakes 167
Chile (Escondida Copper Mine), depressurization of north wall 107–19
canceptual model of ground water flow 113–14
altered (argillic) porphyry 113–14
rhyolites 113
silicified Escondida porphyry 113
conceptual model of recharge mine 108
current pore pressures 110–13
depressurization system design 116–18
field programme and database 108–10
location plan 108
numerical modelling 114–16
chloride plume migration, gold mine tailings dam 337–46
Cleveland Ironstone Field, UK, pyritic roof strata in aquatic pollutant release 251–66
current mine water discharges 255–7
hydrochemistry 258, 260
known discharges of polluted mine drainage 256
metals 259
WATEQ4F modelling 261
data collection methods 252–3
Eston Mine, major discharge 257–60
mining history 253–5
geological framework 254
pollutant generation and attenuation reactions 254
sketch map of area 253
New Marske Mine, acidic spoil drainage 260–2

391
Saltburn, new discharge 262–3
Skinningrove, two overflowing mines 263–4
clubmoss (Lycopodium clavatum) spores, underground
minewater tracing 52–3
Coal Measures
permeability values 66
Upper, Middle and Lower see South Wales Coalfield
coal mining, see also longwall coal mining
CODE-BRIGHT model, flow and heat 192–4
column, sulphide oxidation in unsaturated soil 189–90
ConSim model 234
contaminant sources
mine water pollution 138
vestigial/juvenile acidity 139, 205
contaminant transport, modelling 208–9
copper see Bolivia (San Jos, Mine); Chile (Escondida
Copper Mine); Sweden (Aitik Mine)
Cumbria, UK (Nenthead), abandoned mines as sinks for
pollutant metals 241–50
general setting 243–4
map of Nent Valley, main inputs of
contaminants 242
mine water chemistry, absence of sinks
for zinc 249
other mineral sinks for zinc 245
Rampgill Mine 244–5
sampling methods 244
zinc concentration in River Nent 243
zinc deficits in Nent Valley mine waters 245–8
results of calculations 248
x-y plots showing lack of correlation between
zinc and sulphate 248–9
depth mine voids, test pumping for assessment 315–26
Deerplay Colliery see Lancashire, UK
depressurization systems, design 116–18
dolomite 255
Donana National Park, SW Spain, Aznalicollar mine
spill 187–204
Durham County, UK, iron release from spoil
heap 205–14
conceptual model 209–13
contaminant sinks 210
contaminant sources 209–10
input parameters 210
laboratory and modelled iron and sulphate 211
long term sulphate concentrations 212
results and discussion 210–13
historical and geological overview 206
laboratory methods/results 206–8
location map 206
modelling methods 208–9
contaminant transport 208
oxygen diffusion 208
weathering reactions 208–9
Durham County, UK, mine water recovery
records 64–7
East Fife see Fife, UK
environmental impact, South Nottinghamshire Coalfield
closure 99–104
environmental impact assessment (EIA)
gold mining in Ghana 121–34
uranium mine, Slovak Republic 370
Escondida Copper Mine see Chile
Eston Mine, Cleveland Ironstone Field, UK 257–60
European Commission, uranium mine liabilities,
Slovakia project 368
evapotranspiration, actual (AE) 127
Ferrobacillus ferroxidans 209
Fife, UK, East Fife coalfield, monitoring mine water
recovery 62–4
Fife, UK, Frances Colliery, test pumping deep mine
voids 315–26
hydrogeochemistry 323–4
Piper diagram, plotting pumped mine water
chemistry 323
pumped mine water quality 323
hydrogeological results 317
calculation of Reynolds numbers (RE) for submerged
inlets 319
plots of discharge against specific capacity 318
test pumping data 318
map of location 316
mine water levels 64
sampling and data collection 316–17
schematic diagram showing connection with adjacent
collieries 316
source of poor water quality 325
stratification within mine workings 324–5
diagram showing build-up 325
various determinands 324
Fife, UK, Lochhead Colliery, mine water levels 64
fingerprinting minewater emissions, South Wales
Coalfield 275–86
flooded workings, mine water discharge
chemistry 379–90
flow measurement 252
fluorspar mine (Frazer’s Grove, North Pennines, UK)
consequences of abandonment 245, 347–63
geological setting 348–50
geophysics 356
hydrochemistry 356–62
metal concentration data 359–61
hydrogeology 355–6
map of Great Limestone during/after
mining 357
lithological samples 355
map of location 348
methodology 350–2
mine description 352–5
geological succession 352
sketch diagram 351
monitoring locations 349, 350
water quality data 353–4
fluorspar mine (Strassberg-Harz), underground
minewater tracing 49–57
France (Carnouls, Gard), arsenic removal by oxidizing
bacteria 267–74
acid mine drainage system 268–72
mean values and SD, acidic waters at 40m and
1500m 270
seasonal variations in soluble and particulate As
concentrations 271
bio-oxidation 272–3
sampling and analytical methods 268
site description and map 268–9
Frazer’s Grove, North Pennines, UK see fluorspar mine
Germany, Strassberg-Harz underground minewater tracing 49–57
Ghana, gold mining, environmental impact assessment (EIA) 121–34
gold mining see Ghana; South Africa, plume migration from gold tailings dam
Guadiamar River, SW Spain, Aznalicollar mine spill 187–204
Hlobane Colliery see South Africa, post-closure water quality
hydrological simulation program Fortran (HSPF) 303
Illinois see longwall coal mining
impact structure, Vredefort Dome 339
iron
mine water discharge chemistry 387–9
release from spoil heaps, Country Durham 205–14
vestigial/juvenile acidity 139, 205

see also pyrite
iron ore bodies
pyritic roof strata 251–66
see also Cleveland Ironstone Field; Durham
juveniele acidity 139, 205
Khakassia see Siberia
Lancashire, UK (Deerplay Colliery), test pumping deep mine voids 315–26
hydrogeochemistry 323–4
Piper diagram 323
pumped mine water quality 323
hydrogeological modelling 319–23
contour plots, modelled groundwater levels, with/without conduits 320–1
diagram of conduit network 319
pumping rate and daily rainfall 322
hydrogeological results 317–19
plots, discharge vs specific capacity 318
test pumping data 317
map of location 316
sampling and data collection 316–17
schematic diagram of colliery and site of Black Chough discharge 317
stratification within mine workings 324–5
lead–zinc mines(former)
Cumbria, UK (Nenthead), abandoned mines as sinks for pollutant metals 241–50
France, arsenic contamination 267–74
Frazer’s Grove, North Pennines 245, 347–63
limestone-hosted metal mine see fluor spar mine (Frazer’s Grove)
longwall coal mining, aquifer effects (UK)
Sherwood Sandstone, Selby Coalfield 75–88
background to study 76
data analysis 82–3
geology 77–9
groundwater abstraction at Unitriton-BOCM 81–2
hydrogeology 79–80
piezometer installation 81
results 83–6
site description 76–7
subsidence 80–1
longwall coal mining, aquifer effects (USA) 17–45
head drops 21–23
Jefferson County site, Illinois 26–33
geochemical changes 30
hydraulic tests 28–30
potentiometric changes 30
mechanisms of hydrogeological effects 17–24
deformation zones 18–19
drainage 17–18
permeability changes, previous field studies 20–1
subsidence 17, 18
Saline Country site, Illinois 33–43
gleochmical results 38–40
hydraulic tests 34, 35–7
potentiometric responses 34–5, 37–8
subsidence and strata deformation 33–4, 35
water level recovery after mining 23–4
Longyearbyen, Svalbard, alkaline coal mine drainage 287–8, 292–5
composition of three sampled waters 294
mine spoil leachate 293
pumped mine water 293–5
sampling and analysis methods 288
schematic cross-section of mine 293
Los Rueldos Mine, NW Spain, pollution from mercury and coal mine spoil in Morgao catchment 329–31
Lycopodium clavatum spores, underground minewater tracing 52–3
Lydia technique (Lycopodium clavatum/microspheres), mine water tracing 52–6
Magnesian Limestones, Upper and Lower 79
mercury pollution, Morgao catchment, Spain, mining wastes 330–1
metal cations, mine pit lakes 163, 164
metal sulphide mines see alkaline coal mine drainage, Siberia and Svalbard
Mieres see Spain, NW
MIFIM model, mine water hydraulics 225–8
mine pit lakes, hydrogeochemical dynamics 159–85
chemical stratification 167
chemistry 161–73
arsenic variation 163
divalent metal cations variation 163
representative analysis 162
Younger diagram 163
concentration processes 173–5
conceptual model 160–1
deep mine voids test pumping for assessment 315–26
geochemical controls 167–73
attenuation processes 171–3
grouping of minerals according to neutralization potential 172
release processes 169–71
stratified pit lakes 168
geochemical processes 160
geochemical trends over time 177–8
geological controls 175–83
Nevada case study 179–83
hydromorphic properties, vs natural lakes 160
limnological processes 165–7
vs natural lakes 160, 165
thermal stratification 166, 167
mine wastes
mercury, Los Ruedos Mine, Spain 330–1
NW Spain, pollution from mercury and coal mine spoil in Morgao catchment 331–2
as risk source 233–6
Slovak Republic, Novoveska Huta, uranium mine 366
mine water discharge chemistry 379–90
iron chemistry 387–9
ternary diagram comprising Fe, SO$_4$ and HCO$_3$ 389
mine pit lakes 161–73
mine water characterization 381–6
discharge data for Wales, Scotland and County Durham 382–4
net-alkalinity vs Cl/$\text{Cl} + \text{SO}_4$ 386
Piper diagrams 381–6
names of mines/sources and times 381
proposal for modified classification scheme 386–7
summary of processes affecting discharge chemistry 380
mine water discharges, list 381
mine water inflow, general conceptual models 69–72
mine water pollution
assessment by risk-based methods 139–44
RBCA guidelines 139–44
contaminant sources 138
mine wastes as risk source 233–6
sinks for metals (Cumbria) 241–50
South Nottinghamshire Coalfield closure 102–4
mine water recovery in UK coalfields 61–73
modelling 66–72
area-related flow model 71
average permeability model 71–2
coal measures inflows 69
inflow data 68–72
logarithmic flow model 72
recovery curves 66–8
results 72
shaft water 68
shallow workings water 69
monitoring 61–6
dams 64–5
East Fife coalfield 62–4
mining connections, permeability 65–6
predicting mineral weathering rates 137–57
mine water risk assessment see mine water pollution
mine water tracing 47–60
artificial/natural tracers 49
LydiA technique (Lycopodium clavatum/microspheres) 52–6
sodium chloride 52
Strassberg-Harz underground mine 49–57
mine description 49–52
tracer amount 52
tracer sampling and analyses 52–3
tracer test aims 48
mineral weathering rate prediction 137–57
Aitik mine, Sweden 151–5
laboratory vs field conditions and data 152
predicted vs measured weathering rates at meso-scale and field scale 154–5
scaling procedure, column and field rates from laboratory rates 152–4
site assessment 151–2
aqueous chemical methods 144–50
batch reactors 144–7
column reactors 147–50
mine water risk assessment methodologies 145–6
solute mass flows from field sites 150
extrapolation from laboratory to field scale 144, 150–5
mine water pollution assessment by risk-based methods 139–44
environmental risk 138–9
resolving scale dependence 150–5
scaling parameters 142–3
scaling weathering rates between similar field sites 143–4
minerals, neutralization potential 172
MINTEQA2 (US EPA) 233
modelling
geochemical
Aitik mine, Sweden 151–5
aqueous chemical methods 144–50
Durham, iron release from spoil heap 208–9
Frances Colliery, Fife 315–26
Lancashire (Deerplay Colliery) 319–23
South Nottinghamshire Coalfield 102–4
mine water recovery in UK coalfields 66–72
plume migration from gold mine tailings dam 341–2
pyritic roof strata, aquatic pollutant release 261
SW Spain, Aznalicollar mine spill 189–202
water quality, speciation 229–32
models
CODE-BRIGHT, flow and heat 192–4
ConSim 234
groundwater inflow 69–72
hydrological simulation program Fortran (HSPF) 303
MIFIM 223–6
MINTEQA2 (US EPA) 233
MODFLOW 114, 223, 226–8, 305, 342
MODPATH, particle tracking 234–6, 342
MT3DMS solute transport 342
SHETRAN/VSS-NET 93–5
WATEQ4F 356
see also Piper diagram/plot
MODFLOW model, simulation of ground water leakage from flooded mine 114, 223, 226–8, 305, 342
MODPATH particle tracking model 234–6, 342
INDEX

Morgao catchment, Spain, pollution from mercury and coal mine spoil 327–36
MT3DMS solute transport model 342

Nenthead see Cumbria, UK (Nenthead)
Nevada, case study, mine pit lakes 179–83
New Marske Mine, Cleveland Ironstone Field, UK 260–2
North Pennines, UK
geology 243–4
map 242
see also fluor spar mine
Nottinghamshire, South Nottinghamshire Coalfield closure 99–104
Novoveska Huta see Slovak Republic

oxygen diffusion, coefficient 208

Packer hydraulic tests 28–30, 34–5, 110
piezometers, installation 81
Piper diagram/plot 381–6
calcium sulphate 281
mine water discharges 385
pumped mine water chemistry 323
water emissions, Upper/Lower Coal Measures strata 281, 282, 284
plume migration
gold mine tailings dam 337–46
see also South Africa
porphyry copper system, Escondida Copper Mine, Chile 113–14
prediction of weathering rates see mineral weathering rates
pyrite oxidation 287–8
Durham County 208–9
sulphide-containing ores, post-closure mine water, S Africa 297–314
SW Spain, Aznalicollar mine spill 187–204
pyrite weathering 151–5
reactive surface area at field scale 143
see also iron
pyritic roof strata, Cleveland Ironstone Field, UK 251–66
Quaternary Altiplano aquifer complex, Bolivia 215–39 maps 220, 222
radon, uranium mine, Slovak Republic 365–77
Rampgil Mine, North Pennines, UK 244–5
rebound see tin mine (South Crofty), Cornwall; fluor spar mine (Frazier’s Grove, North Pennines)
RETRASO, reactive transport model, sulphide oxidation in unsaturated soil 193–5
rholites, Chile 113
risk assessment see mine water pollution r2 merite 255
Russian Federation see Siberia
Saltburn, Cleveland Ironstone Field, UK 262–3
Sherwood Sandstone, Selby Coalfield 79–80
see also longwall coal mining, aquifer effects (UK)
SHETRAN/VSS-NET model, groundwater rebound 93–5
Siberia, alkaline coal mine drainage
Abakan–Chernogorsk region 287–90
Abaza Magnetic Mine 287–8, 290–1
Vershina Ty%a Magnetic Mine 287–8, 291–2
siderite 254
silver–tin mines see Bolivia
sinks for pollutant metals (Cumbria) 241–50
Skinningrove, Cleveland Ironstone Field, UK 263–4
Slovak Republic, Novoveska Huta, uranium mine liabilities 365–77
concentration data for radionuclides 373
environmental impact assessment (EIA) 372–3
geological and historical context 366–7
hydrogeological setting 367
liabilities and remediation measures 367–9
map of locations of adits and waste rock heaps 366
methodology, tiered data collection 368–9
occupancy times 373–4
recommendations to minimise health risks 375–6
results 374–5
site descriptions 369–73
overall approach for environmental impact assessment (EIA) 370
radiological map of Muran pit area 371
rock slides 370
uranium concentration values at each site 370
smithsonite 250
soil, sulphide oxidation 187–204
South Africa, plume migration from gold mine tailings dam 337–46
flow model 342–3
E-W cross-section 343
steady-state hydraulic heads in 1998 model 343
flow system 339–40
geology and structure 338–9
map and section 338
hydrogeological regime 339–40
hydrostratigraphic units 339
methodology 337–8
numerical model 341–2
calibration 342
discretization 341–2
site locality 337
sources of contamination 340–1
conceptual model of hydraulic system 341
transport model 343–6
chloride plume migration (1998–2058) 344–5
South Africa, post-closure coalmine water quality 297–314
assessment process 301–11
calculation of water and salt balances 303
data collection 301–2
flow into mined areas 303–4
water balances for tops and slopes of mountains 304
geochemical processes in mined areas 307–11
conceptual models 307
normalized modal distributions 309
predictive geochemical profiles 310
hydrogeology in mined area 304–7
calibration curves for discharges 306
water balance infiltration 305
impact of water discharges on receiving streams 311
source term 302
conceptual system models 299
physical description 298–9
map of locality 298
system geochemistry 301
system hydrology and hydrogeology 299–301
conceptual flow model 300
pre-mining and post-mining conditions 299–301
water management strategies 311–13
annual hydrographs 312
impact on river water 313
plan for mine closure 297–8
reduction in river flow 312–13
South Nottinghamshire Coalfield closure 99–104
borehole and shaft penetrations 101
environmental consequences 104
mine water risk evaluation 102–4
water balance 103
South Wales Coalfield, Eastern sector, fingerprinting
mine water 275–86
methodology 277–8
map of river catchments in Eastern sector 278
Middle–Lower Coal Measures 277, 282
mining position 277
monthly sampling analysis 285–6
outline geology 276
presentation of data 278–85
bar charts 283, 285
Piper diagrams 281–4
Upper Coal Measures 276–7, 279–82
Spain, NW, Mieres, Asturias, pollution from mercury
and coal mine spoil in Morgao catchment 327–36
characteristics of studied area 329
climate and precipitation 329
coal mining wastes 331–2
impoundments 329–32
schematic view of spoil heaps and drainage sys-
tems 332
geology and mineralization 329
map of Cantabrian zone 330
hydrogeology 332–3
Los Ruedos Mine 329–31
elements from mercury spoil heap 331
mercury mining wastes 330–1
map of study area and drainage basin 328
water movement 332–3
water quality 333–5
Spain, SW, Aznalicollar mine spill, sulphide oxidation in
unsaturated soil 187–204
column experiment 187–204
leachates 188–90
mass fraction of each mineral in sludge 189
geochemical model 195–7
location of mine and area affected by sludge 188
modelling 189–202
results 197–202
reactive transport model 193–5
clayey-soil mixture 201
sandy-soil mixture 197
transient flow and heat transport model 192–3
clay-sludge mixture 194
sand-sludge mixture 193
sphalerite 245
spills see Spain, SW, Aznalicollar mine spill
soil drainage
Cleveland Ironstone Field 260–2
iron release 205–14
leachate, alkaline mine drainage 293
mine water discharge chemistry 379–90
pollution from mercury and coal mine, Spain 327–36
Strassberg-Harz underground minewater tracing 49–57
possible tracers 48–9
subsidence see longwall coal mining, aquifer effects
(UK and USA)
sulphate mass flow 143
sulphide oxidation, SW Spain, Aznalicollar mine spill 187–204
sulphide–water reactions, mine pit lakes 170
sulphide-containing ores, post-closure mine water
quality, S Africa 297–314
Summer Camp, Nevada, mine pit lakes 177–83
Svalbard, Longyearbyen, alkaline mine drainage 287–8, 292–5
Sweden, Aitik mine, mineral weathering rate
prediction 151–5
tailings dam, plume migration 337–46
Tarkwaian System, Tarkwa, hydrogeological data
collection 126–7
test pumping, deep mine voids 315–26
thermal stratification, mine pit lakes 166
Thiobacillus ferrooxidans
arsenic removal 267–74
iron oxidation 209
tiered risk assessment, mine water pollution 139–42
tin mines (Cornwall, UK)
Wheal Jane, water quality 90
see also Bolivia
tin mines (Cornwall, UK) groundwater rebound
model 89–97
calculation of infiltration 92
meteorological data 92
mine layout 91
relationship of pumping data with rainfall 92–3
SHETRAN/VSS-NET model 93–5
simulations 94–6
transient flow and heat transport models, sulphide
oxidation in unsaturated soil 192–3
transmissivities 22–3, 338
uranium mine see Slovak Republic, Novoveska Huta
Vershina Ty%E% magnetic Mine, Khakassia, Siberia,
alkaline mine drainage 287–8, 291–2
analyses of stream and pumped mine water 292
sampling and analysis methods 288
Vredefort Dome, impact structure 339
Vryheid Coalfield see South Africa, post-closure
coalmine water quality
WATEQ4F model 356
water see mine pit lakes; mine water discharge
chemistry; mine water tracing; mine water recovery
West Rand see South Africa, plume migration from gold
mine tailings dam wetlands, constructed 206
Whitemoor Common Fault 78–9
X-ray diffraction 355
Younger diagram, chemistry of mine pit lakes 163
zinc
Cumbria, UK (Nenthead), abandoned mines as sinks
for pollutant metals 241–50
deficits 245–8
potable water 241
see also lead–zinc mines (former)