The Nature and Tectonic Significance of Fault Zone Weakening
Special Publication reviewing procedures

The Society makes every effort to ensure that the scientific and production quality of its books matches that of its journals. Since 1997, all book proposals have been refereed by specialist reviewers as well as by the Society's Publications Committee. If the referees identify weaknesses in the proposal, these must be addressed before the proposal is accepted.

Once the book is accepted, the Society has a team of series editors (listed above) who ensure that the volume editors follow strict guidelines on refereeing and quality control. We insist that individual papers can only be accepted after satisfactory review by two independent referees. The questions on the review forms are similar to those for Journal of the Geological Society. The referees' forms and comments must be available to the Society's series editors on request.

Although many of the books result from meetings, the editors are expected to commission papers that were not presented at the meeting to ensure that the book provides a balanced coverage of the subject. Being accepted for presentation at the meeting does not guarantee inclusion in the book.

Geological Society Special Publications are included in the ISI Science Citation Index, but they do not have an impact factor, the latter being applicable only to journals.

More information about submitting a proposal and producing a Special Publication can be found on the Society's web site: www.geolsoc.org.uk
The Nature and Tectonic Significance of Fault Zone Weakening

EDITED BY

R.E. HOLDSWORTH
University of Durham, UK

R.A. STRACHAN
Oxford Brookes University, UK

J.F. MAGLOUGHLIN
Colorado State University, USA

and

R.J. KNIPE
University of Leeds, UK

2001
Published by
The Geological Society
London
The Geological Society of London was founded in 1807 and is the oldest geological society in the world. It received its Royal Charter in 1825 for the purpose of ‘investigating the mineral structure of the Earth’ and is now Britain’s national society for geology.

Both a learned society and a professional body, the Geological Society is recognized by the Department of Trade and Industry (DTI) as the chartering authority for geoscience, able to award Chartered Geologist status upon appropriately qualified Fellows. The Society has a membership of 9099, of whom about 1500 live outside the UK.

Fellowship of the Society is open to persons holding a recognized honours degree in geology or a cognate subject, or not less than six years’ relevant experience in geology or a cognate subject. A Fellow with a minimum of five years’ relevant postgraduate experience in the practice of geology may apply for chartered status. Successful applicants are entitled to use the designatory postnominal CGeol (Chartered Geologist). Fellows of the Society may use the letters FGS. Other grades of membership are available to members not yet qualifying for Fellowship.

The Society has its own Publishing House based in Bath, UK. It produces the Society’s international journals, books and maps, and is the European distributor for publications of the American Association of Petroleum Geologists (AAPG), the Society for Sedimentary Geology (SEPM) and the Geological Society of America (GSA). Members of the Society can buy books at considerable discounts. The Publishing House has an online bookshop (http://bookshop.geolsoc.org.uk).

Further information on Society membership may be obtained from the Membership Services Manager, The Geological Society, Burlington House, Piccadilly, London W1V 0JU (E-mail: enquiries@geolsoc.org.uk; tel: +44 (0) 207 434 9944).

The Society’s Web Site can be found at http://www.geolsoc.org.uk/. The Society is a Registered Charity, number 210161.
Contents

RUTTER, E., HOLDSWORTH, R.E. & KNIFE, R.J. The nature and tectonic significance of fault zone weakening: an introduction

Insights from neotectonic settings, deformation experiments and modelling studies

TOWNEND, J. & ZOBACK, M. Implications of earthquake focal mechanisms for the frictional strength of the San Andreas fault system

KOPP, A. Permeability variation across an active low-angle detachment, western Woodlark Basin (ODP Leg 180) and its implication for fault activation

MAIN, I., MAIR, K., KWON, O., ELPHICK, S. & NGWENYA, B. Experimental constraints on the mechanical and hydraulic properties of deformation bands in porous sandstones: a review

FURLONG, K.P., SHEAFFER, S.D. & MALSERVISI, R. Thermo-rheological controls on deformation within oceanic transforms

Insights from natural fault rocks

WARR, L.N. & COX, S. Clay mineral transformations and weakening mechanisms along the Alpine Fault, New Zealand

YAN, Y., VAN DER PLUIJM, B.A. & PEACOR, D.R. Deformation microfabrics of clay gouge, Lewis Thrust, Canada: a case for fault weakening from clay transformation

MITRA, G. & ISMAT, Z. Microfracturing associated with reactivated fault zones and shear zones: what it can tell us about deformation history

STEFFEN, K., SELVERSTONE, J. & BREARLEY, A. Episodic weakening and strengthening during synmetamorphic deformation in a deep crustal shear zone in the Alps

Geometric controls and fault system evolution

WOJITAL, S.F. The nature and origin of asymmetric arrays of shear surfaces in fault zones

BEACOM, L.E., HOLDSWORTH, R.E., McCAFFREY, K.J.W. & ANDERSON, T.B. A quantitative study of the influence of pre-existing compositional and fabric heterogeneities upon fracture zone development during basement reactivation

Insights from lithosphere- to crustal-scale fault zones

TIKOFF, B., KELSO, P., MANDUCA, C., MARKLEY, M.J. & GILLASPY, J. Lithospheric and crustal reactivation of an ancient plate boundary: the assembly and disassembly of the Salmon River suture zone, Idaho, USA

SIMPSON, C., WHITMEYER, S.J., DE PAOR, D.G., GROMET, L.P., MIRO, R., KROL, M.A. & SHORT, H. Sequential ductile through brittle reactivation of major fault zones along the accretionary margin of Gondwana in Central Argentina

HATCHER, R.D. Rheological partitioning during multiple reactivation of the Paleozoic Brevard Fault Zone, Southern Appalachians, USA

TAVARNELLI, E., DECANDIA, F.A., RENDA, P., TRAMUTOLI, M., GUEGUEN, E. & ALBERTI, M. Repeated reactivation in the Apennine–Maghrebide system, Italy: an example of fault zone weakening?
TALBOT, C.J. Weak zones in Precambrian Sweden.

HANDY, M.R, MULCH, R., ROSENAU, M. & ROSENBERG, C.R. The role of fault zones and melts as agents of weakening, hardening and differentiation of the continental crust—a synthesis

It is recommended that reference to all or part of this book should be made in one of the following ways:

Preface

Many faults appear to form persistent zones of weakness that fundamentally influence the distribution, architecture and kinematic patterns of crustal-scale deformation and associated geological processes in both continental and oceanic regions. To date, however, our understanding of the mechanisms that lead to changes in fault zone rheology, their many geological consequences and the larger-scale implications that they may have for lithosphere dynamics are still poorly understood. This publication contains 18 papers written by an international group of Earth Scientists based around a central theme of the causes and consequences of fault zone weakening in both continental and oceanic regions.

The opening paper (Rutter et al.) presents a basic review and overview of the causes and consequences of fault zone weakness during crustal deformation. The papers that follow are grouped into four sections. In the first section, Insights from Neotectonic Settings, Deformation Experiments and Modelling Studies, the issues of fault strength and rheology are explored using earthquake focal mechanisms (Townend & Zoback), direct analysis of fault core from an active low-angle detachment (Kopf), experimental deformation studies (Main et al.) and numerical modelling (Furlong et al.).

In the second section, Insights from Natural Fault Rocks, the nature and significance of clay-mineral transformations are examined (Warr & Cox, Yan et al.), together with detailed case studies illustrating the use of microfractures in the analysis of reactivated fault zones (Mitra & Ismat) and metamorphic/microstructural evidence for episodic weakening and hardening in a deep crustal shear zone (Steffen et al.).

In the third section, Geometric Controls and Fault System Evolution, the fundamental influence of factors such as fault size, connectivity, position and orientation upon strain localization and fault growth is examined (Walsh et al.). The following papers are concerned with the nature and origin of asymmetric arrays of shear surfaces in natural fault zones (Wojtal) and a quantitative study of the way in which pre-existing basement heterogeneities influence brittle fracture zone development during reactivation (Beacom et al.).

The final section, Insights from Lithosphere-to Crustal-Scale Fault Zones, presents a series of case studies in which issues related to long-term reactivation of faults/shear zones and weakening are examined on various scales. Examples are drawn from: Idaho, USA (Tikoff et al.); Central Argentina (Simpson et al.); the Southern Appalachians, USA (Hatcher); the Apennine–Maghrebide system, Italy (Tavarnelli et al.); and Sweden (Talbot). The final paper in the volume (Handy et al.) presents a synthesis and review of the relationships between fault zones and melting in the continental crust, and how the presence of molten material and its subsequent crystallization may lead to profound changes in crustal strength.

The volume derives from a conference held in March 2000 at Burlington House, London under the joint auspices of the Tectonic Studies Group (Geological Society of London, UK), the Structural Geology & Tectonics Division (Geological Society of America) and InterRidge.

Bob Holdsworth, Durham, UK
Rob Strachan, Oxford, UK
Jerry Magloughlin, Colorado, USA
Rob Knipe, Leeds, UK
Acknowledgements

The editors would like to thank the following colleagues and friends who kindly donated their valuable time and expertise to help with the reviewing of papers submitted to this volume:

Mark Allen
Ian Alsop
Torgeir Andersen
Andy Barnicoat
Donna Blackman
Al Bolton
Joe Cann
Massimo Cocco
Darrel Cowan
Mike Curtis
George Davis
Allen Dennis
Mike Edwards
Dan Faulkner
David Ferrill
Quentin Fisher
Håkon Fossen
Laurel Goodwin
John Grocott
Mark Handy
Achim Kopf
Geoff Lloyd
Ken McCaffrey
Alessandro Michetti
Brendan Murphy
Tim Needham
Kieran O'Hara
Bob Pankhurst
Don Pecor
Gerald Roberts
Ernie Rutter
Peter Sammonds
Roger Searle
Rick Sibson
Chris Talbot
Enrico Tavarnelli
Rob Twiss
John Walsh
Laurence Warr
John Wheeler
Chris Wibberley
Bob Wintsch
Mike Watkeys

We would like to especially thank Roger Searle who was a co-covenor of the conference at Burlington House. We are once again grateful to the staff at both Burlington House and the Geological Society Publishing House, especially Angharad Hills, whose efforts were invaluable in ensuring a successful conference and the rapid production of this volume.

Bob Holdsworth would like to dedicate this volume to his son Ronan who passed away 23 November 2000.