Index

Note: Page numbers in *italic* type refer to illustrations; those in **bold** type refer to tables.

Aberchalder block 121, 124, 127, 132
Acasta gneiss 289
accessory minerals
 in geochronology 289
 reaction textures 295
 recrystallization 297
accretion, multiple 105
accretion model
 orogenic surges 102–103, 106
 Tso Morari dome 102
actinolite schists 304
Adirondacks 358, 376
advection
 by igneous intrusions 47
 by uplift and subsidence 166
Aegean Alps, crustal roots 93
Aegean crust
 deformation 91
 extension 103–104
 metamorphism 104
 roll-back 97
Aegean Sea
 collapsed lithosphere 77, 86
 extension 94
Africa
 drift rate 91, 93
 rift system 91
Aileron Shear Zone 252, 361, 372
Alboran Sea 29–31, 34
 collapsed lithosphere 77, 86
 extension 94
Algeria, heat flow 63
Alice Springs Orogeny 167–168, 197, 238, 262
 causes 144
 deformation 183, 212, 214
 duration 157
 fluid flow 370–373
 geodynamics 139–164
 geological constraints 157
 intracratonic deformation 165
 metamorphism 262, 281
Moho temperatures 161
onset 240
overprinting 352
peak 186, 188
Reynolds Range 254
 shear zones 252–253, 257
 strain rate 186
allanite 290, 297
allanite–monazite equilibria 299
Alpine–Himalayan orogenic belt 90
Alps, European 41
 accretion event 92
 crustal stripping 48
 extension 103
 metamorphism 104
 model geotherms 43
 radiometric dating 299
 tectonic modes 103–105
 thermal regime 64
UHP metamorphism 93
Ailaids 167
Altyn Tagh Fault 282
Amadeus Basin 139
 amphibolite facies 197
 basal units 197
 deformation 142, 353
 divergence 183
 granites 202
 gravity anomalies 214
 sedimentation 140, 145
 shortening 158
 strength 171
 subsidence 186, 197
 transpression 186
amphibole, analysis 336
amphibolite facies
 Amadeus Basin 197
 Chewings Range 239
 Great Glen 121, 127
 Harts Range 239, 352
 Mount Isa 221
 retrogression to 42
 reworking under 297
 Reynolds Range 244, 247, 250, 253, 361
anatexis
 Dronning Maud Land 346
 Karakoram 92, 93
 and orogenic collapse 99
andalusite
 Anmatjira Range 253
 Lander Rock Beds 241
 Mutare–Manica Greenstone Belt 304
 Reynolds Range 247, 359, 376
 Warimbi Schist 243
Andes
 stress state 93
 subduction 96
Anmatjira event 139
Anmatjira Orthogneiss 243, 255, 256
Anmatjira Range 240
 peak metamorphism 248
 structure and metamorphism 244, 245, 255
Anna Reservoir 361, 370
Annandagstoppane 319
Annapurna Range 95
annealing 133
anorthite–marble 243
anorthosites, Dronning Maud Land 346, 349, 351
Antarctica
 in Gondwanaland 143
 Mozambique Belt 319
 (see also Dronning Maud Land)
apatite 290, 299
Apennines 31
 crustal shortening 93
Appalachian/Mauretanide front 143
Appalachians 297
Ar/Ar ages
 Kalahari–Mozambique 310, 312, 316, 317–318
 North China Craton 329
 resetting 320
 Reynolds–Anmatjira Ranges 252
 Vietnam 93
INDEX

Arabian–Nubian Shield 64
Arcadia 376
Archaean cratons, proximity to 63
Archaean shields 3
Argand number 146
Argilke thermal event 139
argon release spectra 290
Arltunga Nappe Complex 142
Arunta Block
deformation 144
divergence 183
emergence 186
reactivation 166
shape 140
shortening 142, 158
tectonic events 139
weakness 171, 186
Arunta Inlier 197
Alice Springs Orogeny 253
granites 202
maps 238, 262
Reynolds–Anmatjira Ranges 237–260
section 283
shear zones 254
Arylla Formation 223
Asian blocks, rotation 144
asthenosphere
in delamination process 15, 144
in rift zones 14
N Atlantic, opening 69
Australia
extension 165
map 140
Ordovician extension 166–167
reactivation and reworking 4–6
tectonic evolution 166–168
Australia–Siberia convergence 167
Australian margin
boundary conditions 174
Phillipines collision 94
available buoyancy 20, 21
avalanche model 106
back-arc basins
high-pressure rocks 102
Pacific 94
back-arc environments, high-pressure terranes 3
back-arc extension 86, 166
back-thrusting 93
Bangweulu Block 63
Barramundi Igneous Association 223, 225, 229, 230
Barramundi Orogeny 221, 233
Barrovian facies
Alps 93
Cyclades 94
Karakoram 91
basement reheating 292
basin formation
and crustal stretching 206, 207, 210, 233
intraplate 262
and thermal history 203–205, 233
Basin and Range Province
collapsed lithosphere 77, 86
extension 94
thermal history 14
basin subsidence 206
Benambran Orogeny 167
Bergen Arcs 48
Betic Cordillera 29
Big Toby Batholith 221, 226, 229
Bigie Formation 221
Bindian Orogeny 167
biotite 271
analysis 332, 334, 336
Black Point 265
Bleachmore Granulite 263, 281, 283
block rotation, and crustal thickening 155–157, 156, 162
Blockade 224
blueschist facies 41, 46, 92, 105
Bohai Bay 324
bolide impact 91
Bonaparte Gulf Basin 167, 171, 183, 186, 188
Bottletree Formation 221
boudins, mafic 39, 52, 294
Bouguer anomalies, Australia 165
boundary conditions
Australian margin 174, 175
thin viscous sheet model 146–147, 173–175
boundary stresses 144
Bowen Basin 168
box folds 124
Brace–Goetze rheology 209, 214
Brazil, plate boundary forces 160
breccias 124
Brevard zone 297
British Columbia, structures 293
brittle failure 59
brittle faulting, Sesia Lanzo 93
brittle faults 118
brittle folds 124
brittle–ductile transition, see frictional–viscous transition
Broken Hill Block, shear wave speed structure 9
Bruna Detachment Zone 282
Bu Khang gneiss dome 93
buoyancy
compositional 14
crustal 16
and crustal thickness 183
and eclogite facies 41–44
exhumation mechanism 98
and retrogression 39
stress 146
and subduction 45, 48
Cackleberry Metamorphics 265
calc–alkaline volcanism 93
Caledonian orogeny 41, 51, 58
Great Glen Fault 121
Caledonides, North Atlantic
map 67, 69–70
thinning 70
Camooweal 224
Canning Basin
crustal thinning 161, 184
extension 148, 166, 183
map 142
marine corridor 240
tectonics 142–143, 144
weakness 171, 183
Cape Smith Belt 296
carbon isotopes
Dronning Maud Land 389
Reynolds Range 367
Carpathian Basin, collapsed lithosphere 77
Carters Bore Rhyolite 223
cataclasis 119, 132
INDEX

continental crust, structural history 115
continental deformation 116–117
continental fault zones, reactivated 115–137
continental lithosphere
layered model 16
stability 33
strength 10
stress guide 165
continental orogeny, and lithospheric rejuvenation
13–37
continental reworking 2–3
continental ribbons 105
continental rifting, active 85
continental subduction 44, 46, 48–49, 51
convective boundary layer 16
convective instability, lithospheric layers 20
convective thinning 15, 16–26
and crustal buoyancy 22–26
and external stress fields 21–22
and orogenic collapse 96
thermal boundary layer 85
Tibet 33
convergence, and lithospheric thickening 83
convergent zone, downwelling 23
copper porphyry, Andes 93
cordierite 241, 243, 245, 247, 270, 271
Coulomb failure 59
Craton Boundary domain 308
cratonic stability 26
cratonization, central Australia 197, 233
cratons, definition 170
creek parameters 169
crenulation cleavage, Wagga–Omeo Metamorphic Belt
186
crenulation fabrics 124, 251, 252
Crete, phyllite–quartzite nappe 94
criticality, self-organized 106
crust
differentiation 208, 229, 233
diffusion 244
geochemical structuring 214
granodioritic 42
mid-lower 201
mid-upper 201
overthickening 59
thermal evolution 3
thermal rejuvenation 9
thermal structure 195
three-layered 201
tonalitic composition 48, 49
two-layer 64
uppermost 202
see also lithosphere
crust–mantle boundary, offsets 165
crustal buoyancy
and convective thinning 22–26
and downwelling 26, 33, 34
crustal delamination 49–51
thermal model 50
crustal density
lateral variation 214
and metamorphism 51
crustal extension, and basin formation 2, 232
crustal fragments, accretion 105
crustal levels, exhumation 199
crustal melting, Himalaya 94
crustal overthrusting 44
crustal roots 39
 Aegean Alps 93
continental crust, structural history 115
continental deformation 116–117
continental fault zones, reactivated 115–137
continental lithosphere
layered model 16
stability 33
strength 10
stress guide 165
continental orogeny, and lithospheric rejuvenation
13–37
continental reworking 2–3
continental ribbons 105
continental rifting, active 85
continental subduction 44, 46, 48–49, 51
convective boundary layer 16
convective instability, lithospheric layers 20
convective thinning 15, 16–26
and crustal buoyancy 22–26
and external stress fields 21–22
and orogenic collapse 96
thermal boundary layer 85
Tibet 33
convergence, and lithospheric thickening 83
convergent zone, downwelling 23
copper porphyry, Andes 93
cordierite 241, 243, 245, 247, 270, 271
Coulomb failure 59
Craton Boundary domain 308
cratonic stability 26
cratonization, central Australia 197, 233
cratons, definition 170
creek parameters 169
crenulation cleavage, Wagga–Omeo Metamorphic Belt
186
crenulation fabrics 124, 251, 252
Crete, phyllite–quartzite nappe 94
criticality, self-organized 106
crust
differentiation 208, 229, 233
diffusion 244
geochemical structuring 214
granodioritic 42
mid-lower 201
mid-upper 201
overthickening 59
thermal evolution 3
thermal rejuvenation 9
thermal structure 195
three-layered 201
tonalitic composition 48, 49
two-layer 64
uppermost 202
see also lithosphere
crust–mantle boundary, offsets 165
crustal buoyancy
and convective thinning 22–26
and downwelling 26, 33, 34
crustal delamination 49–51
thermal model 50
crustal density
lateral variation 214
and metamorphism 51
crustal extension, and basin formation 2, 232
crustal fragments, accretion 105
crustal levels, exhumation 199
crustal melting, Himalaya 94
crustal overthrusting 44
crustal roots 39
 Aegean Alps 93
crustal shortening
Alice Springs Orogeny 197
Alps 103
Apennines 93
central Australia 142, 158, 165
model 158
overriding plates 107
Petermann Orogeny 197
Pyrenees 94
Reynolds–Anmatjira Ranges 254
Tibet 94
Tien Shan 31
crustal strengthening 6
crustal stretching, and basin formation 206, 207, 210
crustal thickening 2, 4, 22
and block rotation 155–157, 156
central Australia 161
and erosion 232
and instability 98
and lithospheric density 42
model systems 151, 154, 155
and Moho temperature 160
and plate convergence 26
crustal thickness
Australia 190
and buoyancy 183
contour plots 178
and subduction 48
Uralis 71
crustal thinning
Canning Basin 161
mechanisms 66–69
crustal weakening
thermal 6, 233
and volcanism 33
Cyclades
exhumation 104
magmatism 94
tectonic slices 105
Dabie Shan 49, 51
Dabie-Qinling-Su Lu orogen 41, 49
Dallmannberge 347
Dalmation Granite 319
Dalradian Supergroup 121
Damara Belt 64
decarbonation 390
Deccan traps 91
deep basement
in Cenozoic orogens 48
and continental collision 39–55
Deep Bore Metamorphics 265
deformation
intraplate 165–193
and lithospheric strength 170
localization 183
deformation fabrics, Harts Range 265, 267, 268
deformation indicators, time dependence 149, 152
deformation and sediment thickness, Centralian
Superbasin 198–199
defhydration reactions 248, 252, 358, 361
Delny–Mt Sainthill Shear Zone 265, 267, 270, 275, 281, 283
density/eclogite facies transition 41
density anomaly, New Zealand 29
density profile, modelling 81
density stratification 14
density and velocity fields, numerical model 23
denudation
accumulated 183
African rift system 91
Alice Springs 202
and heat production 2
Himalaya 94
detachment faults
Himalaya 94
Tyrrhenian–Apennine system 99
devolatization 358, 365
Devonian, Great Glen 121
Diahot terrane 92
diffusional creep 116, 132, 133
diffusive mass transfer 125, 132
dilatancy mechanisms 119, 132
dislocation climb 131
dislocation creep 15
displacement
accumulation 119
mantle layers 19
divergent collapse 77, 84, 85
Dochannasie 124, 127, 131
Dora Maira massif 90, 93, 103, 104, 105
downwelling 2, 23, 24
and convective instability 219
multiple 25
and plate convergence 26, 34
Southern Alps 29
Transverse Ranges 26
Dras arc 92
Dronning Maud Land
events 346, 347
fluid–rock interaction 381–394
geochronology 346
geochemistry 343–346
geology 346–347, 382–383
history and structure 347–352
maps 344, 345, 382
and Mozambique Belt 303, 319
overprinting 392–393
oxygen isotopes 385–389, 386, 387, 388, 389, 390
Pan-African reactivation 343–355
petrography 383–385
retrogression 385
veins 384, 384–385, 387–388
Drummond Basin 167, 168
ductile deformation, Great Glen 127
ductile shear, lithospheric mantle 116
ductile shear zones 95
Alps 93, 103
see also shear zones
Dugald River 224
duplex systems, accommodation 197
dykes
mafic 305, 320
and Rodinia breakup 319
East Africa, rifting 63
East African Orogen 352
East Antarctic mobile belt 343, 352, 381, 383
Eastern Creek Volcanics 221
Eastern European belt 70
Eastern Fold Belt 221, 223, 224
Eckh6rner anorthosite 349, 351
eclipsite–blueschist facies, New Caledonia 92, 93
INDEX

eclogite-facies
Aegean 104
Africa–Europe convergence 91
in collisional systems 3, 39–41
medium temperature 44, 47
orogenic roots 70
eclogite-granulite transition 42, 51
eclogites
Alps 92, 96, 104
Caledonides 69
New Caledonia 92
North Pakistan 92
Norwegian Caledonides 294
NW Scotland 295
in subduction complexes 40
Edwards Creek 278, 279, 282
Eilrig shear zone 127
Eldora 290
enthalpy changes 47
Entia Dome 263
Entia Gneiss Complex 263, 279, 282
Entire Point Shear Zone 265, 274, 279, 283
epidotization 369, 375
episodic movements 90, 107
mechanisms 105
erosion
and crustal thinning 65, 66, 69, 80
and deformation 232
UraUs 71
erosion-sedimentation modelling 172–173
Ep anomalies, granites 49
Europe–Africa convergence 29
European margin, accretion 91
Ewen Batholith 221, 229
excess argon 314
exhumation 64
Alboran Sea 29
Alps 93, 96
Cyclades 104
eclogite-facies rocks 3, 40, 52
fault rocks 117
heat production 205
and high-pressure metamorphism 100
Kanandra Granulite 281
and retrogression 42
Tso Morari dome 98
extension
Karakoram 91
late-orogenic 68
Mediterranean 94
and rifting 77
extensional basins 94
extensional detachments
Caledonides 69
Himalaya 97
extensional shear zones 96, 105
Himalaya 94
strength profiles 133
thermal history 117–119
vertical structure 118
see also shear zones
faults, stick-slip behaviour 4
feldspar, loss of 42
felsic granulites 64, 65
Fiery Creek Volcanics 221
finite element methods 146
finite element models, assumptions 46
fission track dating 290
Fitzroy Trough 143, 165, 167
deformation 183
extension 186
radiogenic heat production 172
weakness 171
flexural isostasy 173
Finders range 142
flood basals 91
Florence–Muller Shear Zone 263, 282
fluid flow
Alice Springs Orogeny 370–373
channelling 375
contact metamorphism 362–365
pathways 375–376
and reactivation 4, 7, 132
regional metamorphism 365–370
fluid fluxes, Reynolds range 371, 373
fluid penetration, and seismic activity 48
fluid pressure 121, 132
fluid sources, Reynolds Range 373–375
fluid–rock interactions
Dronning Maud Land 381–394
Maud Orogeny 390–391
Reynolds Range 357–379
fluids
in eclogite terranes 47–48
in metamorphism 357–358
foliation
Dronning Maud Land 351
fault rocks 125
Reynolds–Anmatjira Ranges 250, 251, 255
forearc basin, New England orogen 168
Fort Augustus 122
Fort William 124, 127
fracture networks 124
framework collapse 127, 131
Franciscan mélangé 41
free-slip conditions 25
frictional behaviour, and fluids 119
frictional flow 116
frictional heating 47
frictional–viscous transition 4, 116, 119, 132
Frontier Formation 304, 308, 309, 318
age 311
Fuglefjellet Formation 383, 386, 390, 392, 393
Falkland Islands 303
fault rocks
assemblages 116
controls 119–120, 120
hydrated 130
microstructure 117
superimposed 118
fault zones
crustal scale 117–119
interconnections 120
Galilee Basin 168, 188
garnet 271
analyses 329–331, 330–331
Gawler Block 172
Gawler Craton 202
geochronology, Kanandra Granulite 275, 278
(see also SHRIMP geochronology
K–Ar ages
fission track dating
Rb–Sr ages
geochemistry, Kanandra Granulite (continued)
Sm–Nd analysis
U–Pb ages)
geodynamic models 96–99
gеophysical overprinting 189
Georgetown 167
Georgina Basin 140, 197, 265
gеosynclinal models 339
gеothermal gradients 44, 46, 47, 59
calculation 61–62
delamination effect 144
Germany, heat flow 63
Gfohl Nappe 51
glaucophone 103
Glenclog inlier 295
global orogenic episodes 90, 95–96
gneisses, granulite facies 265–267
Gondwana
breakup 7, 51, 167
drift 142
East and West 303, 319, 352
fragment 102
grain size, and closure temperature 299
grain size reduction 133
Grampian block 121, 124, 132
granites
A-type 319
Amadeus Basin 202
Anmatjira Range 253
Arunta Inlier 202
geochemistry and heat production 225
I-type 221, 223
incompatible elements in 216
leucocratic 304
Mount Isa 223
Reynolds Range 362
granitoid magmas, in fault zones 119
granitoids, Dronning Maud Land 346, 351
granulite facies
Arunta Inlier 238
dehydration 64
Mount Isa 221
North China Craton 324, 339
and orogenic roots 41
Reynolds–Anmatjira Ranges 239, 244, 247, 250, 253, 255
granulite–eclogite transition 48
granulites
Arunta Inlier 198
retrogression 296–297
reworking 7, 261–287
see also felsic, mafic granulites
gравitational battery 42
gравitational collapse 77, 82
gравitational force, modelling 81–82, 84
gравitational instabilities 2, 16, 20
growth of 24, 25
lithospheric 166
gравitational potential energy
causes 14
contrast 85
conversion to heat 107
and mantle plumes 63
and mantle thinning 68, 77, 96
gравitational spreading 80, 82
gравity anomalies
central Australia 6, 165, 198, 214, 265
Tien Shan 31
Urals 71
gравity-driven flow 80
Great Glen Fault Zone 116, 120–132
maps 122, 126, 128
regional geology 121
sections 123
seismic activity 121
shears 125
sinistral shearing 121
Greenland, NE 41
eclogite terranes 46
greenstone facies
Alps 93, 103, 104
Amadeus basin 197
Great Glen 121
Reynolds Range 245, 253, 359
Grenvillian
Dronning Maud Land 7, 343, 347–349, 352
eclogites 41, 295
Kalahari–Mozambique 312, 318
growth rate function 17
Grubergergebierg 346, 347, 349, 351
Grunehogna Craton 382
Gulf of Lion 94
Haag Nunatacks 303
Halfway Dam 267
Hallgrenskarvet 385, 388
Halls Creek Orogen 58
Halls Creek Province 172
Harts Range 167, 261
intraplate event 262
Metamorphic Complex 239
metamorphic grade 263
retrogression 281
reworking and reactivation 352
thermobarometry 273–274
Harts Range Group 263, 268, 282
evolution 280
Harverson Granite 240, 241, 255
Hawaiian–Emperor seamount chain 92
heat flow
Alice Springs 202
anomalous 63
Caledonides 70
data 223
Moho 58, 71
Mount Isa 224
Urals 71
heat production
burial 202–205, 231, 257
central Australia 199–202, 200, 201
crustal levels 202
distribution 64, 205, 228
granites 202, 225
Mount Isa granites 227, 233
radiogenic 64, 116, 166
Reynolds–Anmatjira Ranges 256
and thermal response 208
heat refraction 224
heat sources
burial 203
distribution 195, 202–205, 220, 226–229, 228, 230
mechanical responses 208–210
and temperature fields 206
heating events, duration 290, 292
Heimefrontfjella 385
Hellenic slab 94
Hercynian front 143
high pressure metamorphism 40
Aegean Alps 92
episodic 100, 107, 108
see also ultra high pressure
Himalaya
accretion event 91
collision 90
episodic events 94
extensional detachments 97
Himalayan front, deformation 160
Hoelfjella 344, 351
hornblende 271
analysis 332, 334
and oxygen fugacity 383
stability 297
Huckitta 263
maps 264, 266
Humboldt Complex 346, 347
Humboldtgebirge 344, 349
hydrothermal alteration
Andes 93
Dronning Maud Land 392
Great Glen Fault 131
hydrothermal fluids
in fault zones 119
Great Glen Fault Zone 124
Iapetus Ocean, closure 69
ice sheet, Australia 140
ignimbrites
California 93
Mount Isa 221
incompatible elements
concentration of 216
differentiation 228
India
accretion 91
in Gondwanaland 143
India–Eurasia convergence
and Tibetan Plateau 42
and Tien Shan 31
Indian margin, subduction 92
Indochina Block 143, 167
Indonesia, bimodal magmatism 94
Insel Complex 346, 347
intratrap compression, central Australia 282
intratrap convergence 14
intratrap deformation
central Australia 195–198
rates 211–213
Irindina Supracrustal Assemblage 263
Isan Orogeny 223, 233
island arcs
accretion to Kalahari Craton 319
and orogenic strength 64
Urals 71
isostasy, Airy 146
isotope retention 290, 296, 297
isotope systematics, and metamorphism 292–299
isotopic response, minerals 290
Ivera Zone 319
Iwupataka Complex 202
Jinka province 263, 265
K–Ar ages
Dronning Maud Land 346
resetting 290
Kaghan eclogites 92
Kalahari Craton
lithologies 304–305
thermal reactivation 318
Kalahari Craton–Mozambique Belt 7, 303–321
ages 310–312
Ar/Ar ages 310, 312, 316, 317–318
maps 304, 305
petrography 308–310
sample localities 308
U–Pb ages 313, 314, 315
Kalkadoon Batholith 221, 229
Kalkadoon–Leichhardt Fold Belt 221, 223, 224
Kamchatka Arc 91
Kanandra Granulite 263, 265, 267
geochemistry 275, 278
high temperature 281
P–T evolution 278–281, 279
petrology 268–271
photomicrographs 269
reworking 279, 283, 284
Sm–Nd analysis 277–278, 278, 278
thermobarometry 273
Kanimblan Orogeny 168
Kararakoram
anatexis 92, 93
Barrovon facies 91
plutonism 94
Karakoram Fault 282
Kazakhstan continent 70, 71
Kenya, rift margin 91
khondalite 326, 339
Khrebet Shcherbakova 351
Kinds Sub-basin 143, 166
Kimberley Block 172, 183
kink bands, conjugate 251
kink folds, Chewings Orogeny 250
Kirwanveggen 319, 383, 384, 386, 389, 391
Kohistan arc 92
Kvervelnatten Granodiorite Gneiss 319
kyanite 253, 304, 361, 372
Lachlan Fold Belt
anisotropy 189
Carboniferous deformation 188
compression 184
Kanimblan Orogeny 168
Tabberabban Orogeny 183
turbidites 167
Lachlan orogen 90, 143, 144
Ladakh Himalaya 91
lamprophyres 349
Lander Rock Beds
contact metamorphism 241
deformation 242, 253, 254
geochemistry 359
intrusions 358
oxygen isotopes 362
petrology 361
sediments 240
Larapinta Event 167
Larapintine Seaway 240
Lasseter shear zone 171, 172, 186
extension 188
overprinting 189
Laurasia, breakup 69
Laurentia 143
Lawn Hill Platform 221, 223, 224
Leichhardt Rift Event 221, 223, 233
Leichhardt River Fault Trough 221, 223, 225
Lena Quartzite 221
Lepontine culmination 93
leucogranites, emplacement 94
leucosomes
Harts Range 265, 268, 278
Mozambique Belt 305
Reynolds Range 248, 252
Lewisian, NW Scotland 292, 295
Liaohe Group 326
listric faults, basin extension 167
lithosphere
convective removal 83
delamination 144
domains 58
drop-off 96
flexural response 184
melting 29
recycling 223
thermal regimes 220
thermal structure 26
thick 224
weak 144
lithospheric density 42
lithospheric extension 14
lithospheric geometry evolution 78, 82, 83, 84
processes 79
lithospheric keels 172
lithospheric mantle
convective thinning 66, 68
ductile shear 116
removal 84
seismic velocities 202
thickened 65–66
thinning 78
Urals 72
lithospheric models parameters 60, 61, 81, 169
rheology 62
lithospheric rejuvenation 13–37
lithospheric strength
central Australia 162, 169
constants 60
and deformation 170, 214
horizontal extension 59–61
and Moho temperature 211
parameters 60
Queensland 186
reduction 219
reference 63
and thermal changes 209
Urals 72
variations in 144
lithospheric thickening 2, 77–88
and convergence 83
lithospheric thinning 26
lithospheric viscosity, San Andreas Fault 27
Lizzies Basin 358
Loch Linhe 122, 124, 127, 131
Loch Lochy 124, 127
Love waves 33
Lower Calcisilicate Unit 358, 361, 364–365, 369, 375
lower crust, shear zones 9
Macdonnell Range 202
McNamara Group 221
Madagascar 382
mafic granulites 64, 65, 199, 211, 270
North China Craton 323–342, 325, 326 parameters 328
rectural features 327
types 329
Maghrebides 94
magmas
asthenospheric origin 29
differentiation 229–231
magmatic arcs
Strangways Orogeny 238
Trans-North China Orogen 326
magmatism
bimodal 93, 221, 349
heat source 255, 257
subduction-related 219
syn-tectonic 9
Magna Lynn Metabasalt 223
Magnitogorsk Arc 70, 71
Main Central Thrust, Himalaya 97
Main Uralian Fault 70
Maksyotov Complex 70
Mallee Bore 282
Mann Fault 197
Mann Range 353
mantle ages 14
Archaean 63
asthenospheric 68
mantle convection, and oceanic lithosphere 13
mantle delamination 15, 26, 166
mantle healing, post-extensional 184, 186
mantle lithosphere 2, 26
detached 33
removal 30
thickening 14
mantle plumes 63
Arunta Block 144
and rifting 72, 77
mantle renewal, mechanisms 15
mantle subduction 15
mantle thickness, and instability 21
marbles
North China Craton 326
Reynolds Range 366, 368, 375, 376
Marianas 96
Marraba Volcanics 223
Mary Kathleen Group 223
Massif Centrale 44, 51
Maud belt 381, 382
Maud Orogeny 389, 393
Maud Province 303
May Downs Gneiss 221
Mediterranean, tectonics 93
megaplume, and flood basalts 91
Melbourne zone 186
melt volumes, and delamination 51
Mendip Metamorphics 281
Messica Granite Gneiss age 310, 314, 318
INDEX

Ar/Ar analysis 312
description 304
fabric 306, 308, 309
Rb/Sr data 311, 311
metamorphic basement, Great Glen 124
metamorphic core complexes
Himalaya 92
Naxos 94
metamorphic episodes 95
metamorphic grade, transition 245, 247, 253
metamorphism
dehydration 3, 58, 64–65
high-pressure 70
and isotope systematics 292–299
static 105
and thermal events 96
metasomatism
Dronning Maud Land 387, 392
and fluid flow 371
and muscovite 297, 299
reactions 375
Reynolds Range 366
mica-rich protoliths, hydration 131
microcontinents, in North China Craton 325
migmatites
Cyclades 94
Dronning Maud Land 346
Grampian Block 121
Harts Range 268
Mozambique Belt 305, 306, 318
Reynolds Range 245
mineral armouring 292
mineral assemblages, mafic granulites 328
mineral chemistry, Harts Range 271
mineral chronometers, responses 289–301
mineral cooling 290
mineral growth, and tectonic mode 95
mineral lineation, Alps 103
mineral phase changes 39
mineralization 133
Mitakoodi Quartzite 223
mobile belts 2, 69
modelling, thin viscous sheets 145–147, 168–175
Moho
displacement 207
eclipses 51
heat flow 58, 61, 63
offset 198
shallowing 208
Moho depth, Australia 189, 190, 210
Moho temperature
contour plots 179
cooling 204
Devonian 186
and lithospheric strength 211
modelling 159, 160, 161
and sediment thickness 145
variability 183, 209
Moine Supergroup 121
Monashee Complex 292
U–Pb concordia 294
monazite, U–Pb ages 275, 290, 292, 299
Mongolia, Inner 324
Moray Firth basin 133
Mount Boothby 372
Mount Chapple 201
Mount Dore 224
Mount Guide Quartzite 221
Mount Hay 201
Mount Isa
cratonization 6, 220
geochemistry 226
granites 227
heat flow 202
migmatism 231
map 220
seismic section 224
tectonism 142, 219–236
tectono-stratigraphy 220–223, 222
Mount Isa Group 221
Mount Isa Rift Event 221, 229, 233
Mount Lofty Ranges 358, 376
Mount Painter Inlier 202
Mount Sainthill 268
Mount Stafford
maps 241, 242
metamorphism 359
tectonic event 253, 254
Mount Stafford Beds 240, 253
Mount Stafford Granite 240
Mount Thomas Quartzite 240
Mozambique Belt
and Dronning Maud Land 352
extent 303
lithologies 305–306
reworking 343
structural domain 308
Mozambique Ocean 319
Murray Basin 171, 172
muscovite, Rb-Sr ages 298
muscovite dehydration models 49
Musgrave Block 139, 144, 186
reworking 262
Musgrave Inlier 197, 201
Mutare–Manica Greenstone Belt 304, 306, 308
age 310
Myally Rift Event 223, 229, 233
Myally Subgroup 221
mylonites
Dronning Maud Land 381, 389
Harts Range 263, 265, 267, 270, 274, 282
mylonitization 279
myrmekite 309
Namaqualand 65, 303, 319
Napperby Gneiss
fluids in 364
heat production 256
intrusion 255
oxygen isotopes 369
precursors 243
and Reynolds Group sediments 361
veins in 375
Napperby Thrust 198
nappes, ultramafic 102
Naraku Batholith 223, 226, 229
Natal 303, 319
Naxos 358
metamorphic core complex 94
necking instability 85
neoblasts, growth of 292
Nepal 95
New Caledonia
eclipses 92
ophiolites 92, 93
New England (Australia) orogen 143, 144, 168, 188
New South Wales 144
New Zealand, P-wave anomaly 28
Ngalia Basin 139, 140, 186, 197, 214
Nhansipfe Megacrystic Granitic Gneiss
age 312, 318, 319
migmatization 305, 311
petrography 309
shear sense indicators 308
North American Cordillera 94
North China Craton 143, 167
granulites 323–342
maps 325
P–T paths 338
polymetamorphism 328–329
reworking 323
tectonics 338–339
Northern Australian Craton 172, 183, 239
Northwest Highland block 121, 124
Norway, eclogite terranes 46
Norwegian Caledonides 70
metamorphism 294, 295
numerical modelling
layer stability 22
lithospheric thinning 78–80
thin viscous sheet 173
Nunataks Metamorphic Complex 347
obduction
Papua New Guinea 90
Spontang Ophiolite 91
ocean closures
and continental shortening 14
and orogenic strength 64
oceanic lithosphere, and mantle convection 13
oceanic subduction 15
oceans, cyclic re-opening 39, 51
Officer Basin 139, 140, 197
Old Red Sandstone, Great Glen 121, 122, 127
olivine
crystal orientation 189
dislocation creep 15
rheology 20, 160
stability 85
Olympic Dam deposit 202
Omeo Zone 358, 376
omphacite–jadeite 104
ophiolites
Arabia 352
emplacement 108
New Caledonia 92, 93
obduction 90, 91
Urals 70
Combin 104
Mon Viso 105
Spontang 91
Solund–Stavfjord 69
Ordovician extension, Australia 166–167
Orniston Thrust 212
orogenesis
episodicity 89–113
factors 63
and Moho temperature 160, 161
orogenic belts, weak 63
orogenic collapse 68, 96, 97
orogenic roots 14, 39
orogenic surges 97–99, 99, 102
orogenic wedges, thickening 44
orogenies
collisional 94
cyclic 51
intraplate 1, 140, 142, 195–198
orogens
distribution 59
longevity 68, 198
orthoyroxene, analysis 332, 334
Orvindjella 344, 351
Otago Schist 95
Ouachita front 143
overprinting relationships 95
oxygen depletion, Sistenup lavas 391–392, 393
oxygen fugacity, and hornblende 383
oxygen isotopes
calc-silicate rocks 386–387
Dronning Maud Land 385–389, 386, 387, 388, 389, 391
Kirwanveggen 390
Lander Rock Beds 362, 372
Reynolds Range 363, 366, 367, 369, 373
Sandy Creek 371
Woodford river 372
P–T conditions
Kanandra Granulites 271, 272, 278–281, 279
North China granulites 334–338, 337
P–T diagram 65
P–T time paths 290, 338
P-wave anomalies
Alboran Sea 31
New Zealand 28, 29
Tien Shan 31
SW Pacific, accretion 99–103, 100
Pacific and Australian plates, convergence 29
Pacific plate 92
Pacific rim 94
N Pakistan 92
palaeomagnetic poles, Australia 142, 158
Pan-African magmatism 347
Pan-African metamorphism 351–352
Pan-African orogeny
eclerigites 41
events 349
magmatism 349
overprinting 303, 318, 319, 320, 383
Pan-African reactivation, Dronning Maud Land 343–355
Pan-African tectonism 351
Pangaea, breakup 58
Papua New Guinea, obduction 90
partial melting
and exsolution 365
and radioactive elements 64
and water 373
passive margins
rafting 58
sediments 69
peak metamorphism 39
Peaked Hill 373
Peel Fault 168
pegmatites 248, 304, 365, 368, 373, 375
Pelite Unit 358, 361–362, 365
pelites 124, 373
penetrative fabrics 95, 103, 297
Periadriatic/Insubric Line 282
peridotite nappe, Turkey 102
peridotites, mantle 46, 116, 189
Pertninjara Movement 167
<table>
<thead>
<tr>
<th>Index Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petermann Ranges</td>
<td>139</td>
</tr>
<tr>
<td>Orogeny</td>
<td>145, 197, 202, 238, 262, 353</td>
</tr>
<tr>
<td>Petermannkette</td>
<td>346</td>
</tr>
<tr>
<td>Petrel Sub-basin</td>
<td>167</td>
</tr>
<tr>
<td>phase transformations, eclogites</td>
<td>47, 52</td>
</tr>
<tr>
<td>Phillipines microplate</td>
<td>94</td>
</tr>
<tr>
<td>phyllonites</td>
<td>125, 127, 131</td>
</tr>
<tr>
<td>phyllosilicates</td>
<td></td>
</tr>
<tr>
<td>fault rocks</td>
<td>125, 132</td>
</tr>
<tr>
<td>growth of 124</td>
<td></td>
</tr>
<tr>
<td>Pillara Extension</td>
<td>143</td>
</tr>
<tr>
<td>plagioclase</td>
<td>271</td>
</tr>
<tr>
<td>analysis</td>
<td>332, 333</td>
</tr>
<tr>
<td>plate boundaries, far-field</td>
<td>188</td>
</tr>
<tr>
<td>plate boundary forces</td>
<td>23, 159–161, 160, 165, 190</td>
</tr>
<tr>
<td>plate boundary orogenies</td>
<td>14</td>
</tr>
<tr>
<td>plate boundary stress</td>
<td>15, 158</td>
</tr>
<tr>
<td>plate convergence</td>
<td>2, 21</td>
</tr>
<tr>
<td>and crustal thickening</td>
<td>26</td>
</tr>
<tr>
<td>and downwelling</td>
<td>26</td>
</tr>
<tr>
<td>Transverse Ranges</td>
<td>26</td>
</tr>
<tr>
<td>plate margins, thermal regimes</td>
<td>212</td>
</tr>
<tr>
<td>platform sedimentation</td>
<td>166</td>
</tr>
<tr>
<td>polymetamorphism</td>
<td></td>
</tr>
<tr>
<td>North China Craton</td>
<td>328–329</td>
</tr>
<tr>
<td>thermal controls</td>
<td>255</td>
</tr>
<tr>
<td>porphyroblasts, and static metamorphism</td>
<td>105</td>
</tr>
<tr>
<td>Possum Creek Charnockite</td>
<td>243, 245, 255</td>
</tr>
<tr>
<td>pressure solution</td>
<td>119, 131</td>
</tr>
<tr>
<td>pressure-temperature plots, eclogites</td>
<td>44</td>
</tr>
<tr>
<td>Prices Creek movement</td>
<td>184</td>
</tr>
<tr>
<td>Proterozoic–Phanerozoic boundary</td>
<td>41</td>
</tr>
<tr>
<td>protomylonites</td>
<td>127</td>
</tr>
<tr>
<td>Prydz–Leeuwin orogenic system</td>
<td>2</td>
</tr>
<tr>
<td>psammites</td>
<td>124, 125</td>
</tr>
<tr>
<td>punctuated equilibrium</td>
<td>106</td>
</tr>
<tr>
<td>Pyrenees, crustal shortening</td>
<td>94</td>
</tr>
<tr>
<td>Qaidam Block</td>
<td>143</td>
</tr>
<tr>
<td>Queensland, lithospheric strengthening</td>
<td>186</td>
</tr>
<tr>
<td>Quillar Formation</td>
<td>221</td>
</tr>
<tr>
<td>radioactive basement, denudation</td>
<td>209</td>
</tr>
<tr>
<td>radioactive elements</td>
<td>58</td>
</tr>
<tr>
<td>distribution</td>
<td>58</td>
</tr>
<tr>
<td>enrichment</td>
<td>64</td>
</tr>
<tr>
<td>radiogenic daughter isotopes</td>
<td>290</td>
</tr>
<tr>
<td>radiogenic heat production, Fitzroy Trough</td>
<td>172</td>
</tr>
<tr>
<td>rapakivi textures</td>
<td>319</td>
</tr>
<tr>
<td>rare earth elements, magmatic origins</td>
<td>29</td>
</tr>
<tr>
<td>Rauer Group</td>
<td>390</td>
</tr>
<tr>
<td>Rayleigh numbers</td>
<td>16, 19</td>
</tr>
<tr>
<td>Rayleigh waves</td>
<td>33</td>
</tr>
<tr>
<td>Rayleigh–Taylor instability</td>
<td>14, 15, 18, 21</td>
</tr>
<tr>
<td>growth rate</td>
<td>17</td>
</tr>
<tr>
<td>numerical models</td>
<td>22</td>
</tr>
<tr>
<td>Rb–Sr ages</td>
<td></td>
</tr>
<tr>
<td>Kalahari–Mozambique</td>
<td>310</td>
</tr>
<tr>
<td>muscovite</td>
<td>298</td>
</tr>
<tr>
<td>resetting</td>
<td>320</td>
</tr>
<tr>
<td>Reynolds–Anmatjira Range</td>
<td>252</td>
</tr>
<tr>
<td>reaction textures, accessory minerals</td>
<td>295</td>
</tr>
<tr>
<td>reaction</td>
<td>1</td>
</tr>
<tr>
<td>definition</td>
<td>4</td>
</tr>
<tr>
<td>fault systems</td>
<td>4</td>
</tr>
<tr>
<td>shear zones</td>
<td>4</td>
</tr>
<tr>
<td>reactivation and reworking, characterization</td>
<td>8</td>
</tr>
<tr>
<td>Red River fault</td>
<td>93</td>
</tr>
<tr>
<td>Redbank Hill</td>
<td>201</td>
</tr>
<tr>
<td>Redbank Shear Zone</td>
<td></td>
</tr>
<tr>
<td>displacement</td>
<td>212</td>
</tr>
<tr>
<td>kinematic model</td>
<td>213, 214</td>
</tr>
<tr>
<td>Redbank Thrust Zone</td>
<td>142, 144, 166, 198, 202</td>
</tr>
<tr>
<td>regional metamorphism, fluid flow</td>
<td>365–370, 376</td>
</tr>
<tr>
<td>retro-shear</td>
<td>282</td>
</tr>
<tr>
<td>retrogression</td>
<td></td>
</tr>
<tr>
<td>Alps</td>
<td>104</td>
</tr>
<tr>
<td>Dronning Maud Land</td>
<td>385, 388–389</td>
</tr>
<tr>
<td>granulites</td>
<td>296–297</td>
</tr>
<tr>
<td>Great Glen</td>
<td>121, 124</td>
</tr>
<tr>
<td>hydrous</td>
<td>267</td>
</tr>
<tr>
<td>Reynolds Range</td>
<td>365, 366, 373</td>
</tr>
<tr>
<td>reworking</td>
<td>1</td>
</tr>
<tr>
<td>lower temperature</td>
<td>297–299</td>
</tr>
<tr>
<td>North China Craton</td>
<td>323</td>
</tr>
<tr>
<td>prograde</td>
<td>294–296</td>
</tr>
<tr>
<td>Reynolds Range Group</td>
<td></td>
</tr>
<tr>
<td>contact metamorphism</td>
<td>243, 247</td>
</tr>
<tr>
<td>deposition</td>
<td>253</td>
</tr>
<tr>
<td>lithologies</td>
<td>240, 358</td>
</tr>
<tr>
<td>petrology</td>
<td>361</td>
</tr>
<tr>
<td>Reynolds–Anmatjira Range</td>
<td>6, 7</td>
</tr>
<tr>
<td>granite emplacement ages</td>
<td>240</td>
</tr>
<tr>
<td>maps</td>
<td>239, 246, 247, 359</td>
</tr>
<tr>
<td>metamorphic zones</td>
<td>252</td>
</tr>
<tr>
<td>radiometric ages</td>
<td>252</td>
</tr>
<tr>
<td>sections</td>
<td>249</td>
</tr>
<tr>
<td>structural superposition</td>
<td>253–255</td>
</tr>
<tr>
<td>tectonic evolution</td>
<td>237–260</td>
</tr>
<tr>
<td>tectonothermal events</td>
<td>253</td>
</tr>
<tr>
<td>rheological profiles</td>
<td>62, 66, 72</td>
</tr>
<tr>
<td>Rif Mountains</td>
<td>29, 31</td>
</tr>
<tr>
<td>rifing</td>
<td>77–88</td>
</tr>
<tr>
<td>East Africa 6</td>
<td></td>
</tr>
<tr>
<td>and mantle plumes</td>
<td>72, 77</td>
</tr>
<tr>
<td>North China Craton</td>
<td>326</td>
</tr>
<tr>
<td>Pangaea</td>
<td>59</td>
</tr>
<tr>
<td>passive margins</td>
<td>58</td>
</tr>
<tr>
<td>River Spean</td>
<td>124</td>
</tr>
<tr>
<td>Rodingan movement</td>
<td>186</td>
</tr>
<tr>
<td>Rodinia Supercontinent</td>
<td>303, 319</td>
</tr>
<tr>
<td>roll-back</td>
<td></td>
</tr>
<tr>
<td>Aegean</td>
<td>97, 103</td>
</tr>
<tr>
<td>East Pacific</td>
<td>93</td>
</tr>
<tr>
<td>rotation, blocks</td>
<td>147</td>
</tr>
<tr>
<td>rutile</td>
<td>290, 295, 296</td>
</tr>
<tr>
<td>S-waves, central Asia</td>
<td>32</td>
</tr>
<tr>
<td>Salknappen</td>
<td>319</td>
</tr>
<tr>
<td>Samphire Marsh Movement</td>
<td>166</td>
</tr>
<tr>
<td>San Andreas Fault</td>
<td>26</td>
</tr>
<tr>
<td>comparison with Australia</td>
<td>168</td>
</tr>
<tr>
<td>lithospheric viscosity</td>
<td>27</td>
</tr>
<tr>
<td>Sandhø</td>
<td>351</td>
</tr>
</tbody>
</table>
INDEX

Sandy Creek
geochemistry 370
oxygen isotopes 371
Sanfront–Pinerolo Unit 105
Scandian Phase 69, 70
Scandinavian Event 58
scapolite 243, 362
Schirmacher Oasis 347
Schwabenland Expedition 344
Sea of Japan, rifting 94
sea levels, and orogenies 94, 94–95
sedimentary cover, removal of 204
sedimentary depocentres 198
sedimentation-erosion, contour plots 181
seismic activity, and fluid penetration 48, 372
seismic anisotropy 116, 189
seismic Moho 39
seismic reflectors, Urals 71
seismic wave anomalies, Australia 172
Selkirk Allochthon 292
semi-brittle fabrics 131
sericitisation 125, 127
serpentinites
Kalahari Craton 304
Urals 70
Sesia zone 41, 91
Sesia–Lanzo zone 90
brittle faulting 93
shear heating 29, 219
shear sense indicators 251
shear strain, partitioning 119
shear wave speed structure, Broken Hill Block 9
shear zones
Alice Springs Orogen 7, 252–253, 256
Arunta Inlier 254, 265
evolution 90
interconnected 120
lower crust 9
mylonitic 118
Reynolds–Anmatjira Ranges 251, 361, 370, 376
Tabberaban orogeny 183
upper mantle 10
see also ductile shear zones; fault zones
shearing, fault-related 131
SHRIMP geochronology
Dronning Maud Land 343, 347
Entire Point shear zone 277, 279
Kalahari–Mozambique 310
Kanandra Granulite 276
Landr Rock Beds 359
methodology 275–278
SIGHT seismic line 29
sillimanite
Kalahari Craton 304
Kanandra Granulite 265, 267, 268, 281
Karakoram 92
Reynolds Range 247, 248, 253
sills, granitic 254
Sino–Korea Platform 324
Sino–Korean craton 41
Sistefjell 392
Sistefjell lavas 383, 385, 391–392
Skaly 347
skarns 366, 368, 375
Skarsnuten 383, 386, 390
slab detachment 14, 16
slab retreat 94, 100
slab tear 96, 97
Sm–Nd analysis
Kanandra Granulite 277–278, 278, 278
Scotland 295
Sm–Nd resetting 320
solution creep 131
solution seams 125
Søre Petermannsfjella 351
South China Block 143
South Tibetan Detachment 94, 98
Southern Alps, New Zealand 29, 34
spinel 247, 268, 271
spreading strain rate 78
Sr isotopic ratios, Tibet 33
Sr-depletion 223
stable isotope studies 357, 381
Stafford Tectonic Event 240–242, 253, 254, 257
Stairway Formation 166
staurolite 253, 270, 372
strain
accommodation 132
accumulated 189
strain hardening 119, 131
strain localization 6, 119, 120
Alice Springs Orogen 9
Australian blocks 183
strain partitioning
contact aureoles 376
lithological 124
strain rate
Alice Springs Orogeny 186
contour plots 175, 176, 177, 184, 187, 188
and viscosity 18, 151
strain softening 99, 119
Strangways Metamorphic Complex 238, 239, 263, 282
evolution 278, 280
Strangways Orogeny 139, 238, 242–245
Anmatjira Range 244–245
Reynolds Range 243–244, 247, 253, 254
strength distribution
central Australia 170, 171
thin viscous sheets 147
strength envelopes 209, 210
strength profile, modelling 82
strength v. depth 177
stress amplification 219
strike-slip deformation
and downwelling 29
post-collisional 46
and viscosity 21
strike-slip zones 282
structural domains, Kalahari-Mozambique 306–308, 307
Stuart Shelf 202
subduction
Andean-type 96
Australian margin 166
continental collisions 219
Indian margin 92
southern continents 143
Trans-North China Orogen 326
subduction complexes, eclogites in 40
subduction zones, roll-back 96–97, 99
Superior Province 63, 296
surface heat flux 172
surface topography
contour plots 180, 185
evolution 183
Surprise Creek Formation 221
tonalite–trondhjemite 304
tonalite–trondhjemite–granodiorite gneisses 324, 326
Torcastle block 121, 124, 127, 131
torque balance 107
Trans Mojave–Sierran shear zone 94
Trans-North China Orogen 7, 324, 326, 339
Trans-Uralian Zone 71
transpression
Amadeus Basin 186
Kalahari Craton 319
New England orogen 168, 188
Reynolds-Annmatjira Range 252
transpressional wrench, episodic 90
Transverse Ranges
California 26
downwelling 34
teleseismic tomography 26, 27
Trois Séigneurs 358
Tso Morari dome 91, 92
exhumation 98
UHP rocks 101
Turkey, peridotite nappe 102
Tverregga 385, 388
Tverregga Banded Gneiss 383
Tverreggtelen 383, 388
Tyrrenian Sea 99
crustal extension 31, 34
Tyson Creek Granulite 255
U–Pb ages
Kalahari Craton–Mozambique Belt 313, 314, 315
Reynolds Range 246
U–Pb concordia
British Columbia 298
Monashee Complex 294
U–Pb discordance 292
U–Pb geochronology 289, 310
U/Pb isotope systematics 7, 297
Ubeende Belt 63
ultra-high pressure metamorphism 39, 90
Alps 92, 93
Himalaya 91, 92
Western Gneiss region 46
ultramylonites 297
underplating
and delamination 51
Karakoram 93
subduction-related 44
thinned lithosphere 26
Ungava peninsula 296
Upper Calcsilicate Unit 358, 362, 366, 373, 375
upper mantle
Alboran Sea 31
anisotropy 10
reflectivity 51
upwelling, convective 14
Ural Ocean, closure 71
Uralian zones 70
Urals 59, 64
map 68
orogenic belt 70–72
section 71
uranium mineralization 202
Valhalla Complex, thermal history 291
Van Emmerick extension 143
Vandusen Migmatite Gneiss 305, 311
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vanoise</td>
<td>103</td>
</tr>
<tr>
<td>Variscan Orogeny</td>
<td>41, 43, 143</td>
</tr>
<tr>
<td>and delamination</td>
<td>51</td>
</tr>
<tr>
<td>reworking</td>
<td>299</td>
</tr>
<tr>
<td>veins</td>
<td></td>
</tr>
<tr>
<td>Dronning Maud Land</td>
<td>384, 384–385, 387–388, 391</td>
</tr>
<tr>
<td>Reynolds Range</td>
<td>368, 370, 276</td>
</tr>
<tr>
<td>velocity vectors, plots</td>
<td>182</td>
</tr>
<tr>
<td>vertical forces</td>
<td>165</td>
</tr>
<tr>
<td>vertical stretch</td>
<td>44</td>
</tr>
<tr>
<td>finite element mesh</td>
<td>45</td>
</tr>
<tr>
<td>vertical thickening</td>
<td>44</td>
</tr>
<tr>
<td>Victoria</td>
<td>144, 186</td>
</tr>
<tr>
<td>Vietnam, Ar/Ar ages</td>
<td>93</td>
</tr>
<tr>
<td>viscosity</td>
<td></td>
</tr>
<tr>
<td>Newtonian</td>
<td>147, 148–151</td>
</tr>
<tr>
<td>non-Newtonian</td>
<td>14, 15, 17, 18, 26, 151–155</td>
</tr>
<tr>
<td>variations</td>
<td>145</td>
</tr>
<tr>
<td>viscous flow</td>
<td>116</td>
</tr>
<tr>
<td>shallowing</td>
<td>132</td>
</tr>
<tr>
<td>viscous stress</td>
<td>26</td>
</tr>
<tr>
<td>volatiles, loss of</td>
<td>33</td>
</tr>
<tr>
<td>volcanic arc, New England orogen</td>
<td>168</td>
</tr>
<tr>
<td>volcanism, and crustal weakening</td>
<td>33</td>
</tr>
<tr>
<td>Vumba Granite Gneiss</td>
<td>304, 306, 308, 312</td>
</tr>
<tr>
<td>age</td>
<td>310, 319</td>
</tr>
<tr>
<td>Weberra Granite</td>
<td>223</td>
</tr>
<tr>
<td>Wegener-Inlandeis</td>
<td>344</td>
</tr>
<tr>
<td>Western Australian Craton</td>
<td>172</td>
</tr>
<tr>
<td>Western Fold Belt</td>
<td>221, 223, 224, 229</td>
</tr>
<tr>
<td>Western Gneiss region, Norway</td>
<td>41, 46, 69</td>
</tr>
<tr>
<td>Willara Sub-basin</td>
<td>166</td>
</tr>
<tr>
<td>Williams Batholith</td>
<td>223, 226, 231</td>
</tr>
<tr>
<td>Willyama Inlier</td>
<td>202</td>
</tr>
<tr>
<td>Wilson Cycle</td>
<td>51, 58, 65</td>
</tr>
<tr>
<td>Wiso Basin</td>
<td>197</td>
</tr>
<tr>
<td>Wohlhatmassiv</td>
<td>344, 351</td>
</tr>
<tr>
<td>wollastonite</td>
<td>366, 375, 390</td>
</tr>
<tr>
<td>Woodford River</td>
<td>366</td>
</tr>
<tr>
<td>map</td>
<td>368</td>
</tr>
<tr>
<td>Woodroffe Thrust</td>
<td>197, 199</td>
</tr>
<tr>
<td>xenoliths, age of</td>
<td>14</td>
</tr>
<tr>
<td>xenotime</td>
<td>290</td>
</tr>
<tr>
<td>Yangtze craton</td>
<td>41, 51</td>
</tr>
<tr>
<td>Yaningidjara Hills</td>
<td>371, 373</td>
</tr>
<tr>
<td>Yaringa Metamorphics</td>
<td>221</td>
</tr>
<tr>
<td>Yarrol–Great Moreton Fault</td>
<td>168</td>
</tr>
<tr>
<td>Yellow Sea</td>
<td>324</td>
</tr>
<tr>
<td>Zambia Block</td>
<td>63</td>
</tr>
<tr>
<td>Zermatt–Saas zone</td>
<td>92, 104</td>
</tr>
<tr>
<td>zircon</td>
<td></td>
</tr>
<tr>
<td>cathodoluminescence images</td>
<td>312</td>
</tr>
<tr>
<td>crystallization</td>
<td>289</td>
</tr>
<tr>
<td>metamorphic</td>
<td>295</td>
</tr>
<tr>
<td>reworked</td>
<td>296</td>
</tr>
<tr>
<td>U–Pb systematics</td>
<td>292</td>
</tr>
<tr>
<td>xenocrystic</td>
<td>290</td>
</tr>
</tbody>
</table>