Index

Note: Page numbers of in *italics* refer to tables and those in **bold** refer to figures.

**acoustic reflectors**
- Bermuda Rise 23-48
- locations **25**
- Albian black shale facies, Blake Nose 5–7, 49–72
- Oceanic Anoxic Events 49–72, 73–91
- Albian–Cenomanian boundary events 1–19
- Allison Guyot (ODP Site 865), carbon isotope records **204**
- Aptian–Albian benthic foraminiferal record, ODP Leg 171B 73–91
- correspondence analysis **80**
- evolutionary change, factors 83–6
- stratigraphic distribution **82**
- astronomical calibration of Danian time scale 163–83
- Atlantic Coastal Plain, sediment biostratigraphic subdivision and correlation 93–108
- atmospheric general circulation model (AGCM), climate modelling, Palaeogene 254

**Bermuda Rise sites**
- acoustic reflectors 25, 23–48
- palygorskite clays in deep-water sediments 307–14
- stratigraphy 37–40

**Blake Nose sites (ODP Leg 171B)** 1–19
- acoustic reflectors 23–48
- Albian black shale facies 5–7, 49–72
- Aptian–Albian benthic foraminiferal record 73–91
- correlation with South Carolina Coastal Plain coreholes 93–108
- Cretaceous–Tertiary (K–T) boundary 9–10, 35–7
- Chicxulub ejecta deposits, geochemistry 131–47
- climate change in subtropical North Atlantic 2–13
- spherules as record of Chicxulub ejecta deposits 149–61
- Eocene deep-water sediments 32–4
- palygorskite clays 307–14
- geochemical data 134–6
- isotope records, comparison with other sites 286–7
- Late Palaeocene Thermal Maximum 10
- carbon addition and removal 293–305
- lithostratigraphy and seismic stratigraphy 2–4, 28–32
- Maastrichtian, implications for global change 111–26
- extinctions and palaeoceanographic events 9 setting and importance 114–26
- Maastrichtian, Upper, sediment biostratigraphic subdivision and correlation 93–108
- Mid-Cretaceous sea surface temperatures and OAE (1d and 2) 7–9
- Mid-to Late Eocene organic walled dinoflagellate cysts, offshore Florida 225–50
- orbitally forced climate change, stable isotopes in foraminifera 273–91
- palaeobathymetry 27–8
- previous work 25–6

**seismic profile** 5
- Site-1049 51, 53–60
- geochemical data 134–6, 139–41
- palygorskite clays 307–14
- Site-1050 51, 62–3, 94, 95–6
- bio and magnetostratigraphy 170
- Danian time scale 163–83
- geochemical data 137, 142–3

**Site-1051**
- age model **279**
- carbon isotope records 204, 300–302
- Late Palaeocene Thermal Maximum carbon addition/removal 293–305
- magnetostratigraphic and biostratigraphic datum levels 278
- mid-latitude Palaeocene–Eocene radiolarian faunas 185–224
- Site-1052 51, 60–2, 94, 95–6
- geochemical data 137, 142–3
- Site-1053, dinoflagellate cysts 225–50
- sites, maps and 3-D 3, 26–7, 112, 186–7
- spherule bed 151–57
- comparisons with other K–T ejecta deposits 157–9
- see also Ocean Drilling Program

**Blake–Bahama Basin, burial history 53**

**Campanian–Maastrichtian refrigeration, stable isotope records** 16

**carbon dioxide, climate variability in early Palaeogene** 253–70

**carbon isotopes**
- Blake Nose sites 118
- Maastrichtian **204**, 300–302
- carbon addition/removal, Late Palaeocene Thermal Maximum 293–305
- composition of organic matter 71–2
- Holocene carbon cycle 297–8
- Pacific, Atlantic and Caribbean **204**
- theoretical background 295–6
- Caribbean Sea (ODP Leg 165: Site 1001A) 163–83
- bio and magnetostratigraphy 174, 176
- carbon isotope records **204**
- XRF Fe record 171

**Ceratolithoides** taxa, Upper Maastrichtian 99–102
- Chicxulub ejecta deposits 9–10, 131–47, 149–61
- comparison with other deposits 146
- geochemistry 131–47
- iridium anomaly 36, 131
- spherules 149–61
- clay mineral analyses, Eocene 307–14
- climate change in subtropical North Atlantic
- Cretaceous–Tertiary/Palaeogene (K–T/C–P) boundary 1–19
- lithostratigraphy and seismic stratigraphy 2–5
INDEX

orbital forcing, stable isotopes in foraminifera 273–91
climate variability in early Palaeogene 253–70
sensitivity study
model and methods 256–7
results 257–63
continental runoff 261–2, 264–5, 268
continental slope mass wasting, C–P boundary sites 35–7, 39
correspondence analysis, Aptian–Albian benthic foraminiferal record 80
Cretaceous
climate modelling sensitivity study 253–70
magnetic polarity time scale, calibration array 179
Cretaceous sea surface temperatures, and OAE [(ld and 2)] 7–9
Cretaceous–Tertiary/Palaeogene (K–T/C–P) boundary
climate change in subtropical North Atlantic 1–19
continental slope mass wasting 35–7, 39
element stratigraphy 138–46
detrital elements 145–6
redox-sensitive elements 138–45
Sr and Mg 138–9
geochemistry 131–47
comparison with other K–T ejecta deposits 146
geochemical data 134–7, 139–43
samples and analytical methods 132–8
spherules as record of Chicxulub ejecta deposits 9–10, 131–47, 149–61
stable isotope records 13–18
Campanian–Maastrichtian refrigeration 16
Cretaceous climate optimum 15–16
Danian climate 16–17
Palaeocene–Eocene climate trends 17–18
Danian
climate, stable isotope records, K–T boundary 16–17
foraminiferal zone P-alpha 132
Danian time scale 163–83
astronomical calibration 177–81
Palaeogene time scale and Danian stage 164–6
spectral analysis and direct cycle counts 168–76
Upper Danian stratigraphy at ODP Sites 1050 and 1001!! 166–7
X-ray fluorescence (XRF) scanning 167–8
Dinoflagellate cysts from ODP Leg 171B (Site 1053A), offshore Florida 225–50
absolute ages 235
first and last occurrences 232–3, 234
material and methods 226–9
neritic ratios 237, 238
palynomorph counts 230–1, 236
previous studies 228–9
results 229–35
systematic palynology 239–43
taxonomic appendix 243–50
Ekman transport divergence 263
Eocene
climate and foraminiferal record 273–5
climate modelling sensitivity study 253–70
Palaeocene–Eocene climate trends 10–13, 17–18
palygorskite clays in deep-water sediments 307–14
precessional cycle, orbital forcing 256
Eocene deep water, Late Palaeocene Thermal Maximum and continental slope mass wasting during C–P impact 23–45
Bermuda Rise, deposit stratigraphy 37–40
foraminiferal record
excursion fauna 34
isotopes, evidence for orbitally forced climate change 273–91
ODP Leg 171B, Aptian–Albian 73–91
Palaeocene–Eocene transition 34–5
greenhouse gases, climate variability in early Palaeogene 253–70
high-resolution sampling 70–1
inoceramid extinction, Blake Nose sites, Maastrichtian 117
iridium anomaly, Chicxulub ejecta deposits 36, 131
isotope records
Blake Nose sites, comparison with other sites 286–7
Cretaceous–Tertiary/Palaeogene (K–T/C–P) boundary 13–18
JOIDES project 23–48, 225–50
Joint Time–Frequency Analysis (JTFA) Tool 168–76
Late Palaeocene Thermal Maximum 10
carbon addition/removal, Site-1051, Blake Nose 293–305
carbon isotope excursion, general solutions 297–300
climate modelling 255–6
and continental slope mass wasting during C–P impact 23–45
Bermuda Rise, deposit stratigraphy 37–40
layer lamination and thickness 71
Lithraphidites taxa, Upper Maastrichtian 102–3
Maastrichtian
Blake Nose sites 114–15
implications for global palaeoceanographic and biotic changes 111–26
benthic foraminifera 120
inoceramid extinction 117
Maastrichtian models 123–6
models 123–6
other environments 119–26
palaeogeographical map 113
sea levels 122–3
Maastrichtian, Lower, disconformity 108
Maastrichtian, Upper
Atlantic Coastal Plain and Blake Nose, sediment biostratigraphic subdivision and correlation 93–108
extinctions 9–10
maceral analysis 71
magnesium, Cretaceous–Tertiary/Palaeogene (K–T/C–P) boundary 138
Maud Rise (ODP Site 690), carbon isotope records 204
methane
cclimate variability in early Palaeogene 253–70
injection into carbon cycles 298–300

*Micula* taxa, Upper Maastrichtian 103–6
Milankovitch cyclicity see orbital forcing

North Atlantic
continental runoff 261–2, 264–5, 268
net moisture balance 260–1, 267–8
sea ice, modelling 260, 267
upwelling 263, 266
see also sea surface temperatures

Ocean Drilling Program
Bermuda Rise sites 23–48, 307–14
Blake Nose sites 2–13, 5, 50, 51, 166
Early Albian black shale OAEs 5–7, 49–72
lithostratigraphy and seismic stratigraphy 2–4,
28–32
see also Blake Nose sites (ODP Leg 171B)
Caribbean Sea site (ODP Leg 165: Site 1001A)
163–83
Pacific, Allison Guyot (ODP Site 865) 204
South Atlantic, Maud Rise (ODP Site 690) 204

Oceanic Anoxic Events 49–72, 73–91
1b, Aptian–Albian benthic foraminiferal record
73–91
orbital forcing
Eocene
climate change 284–6
precessional cycle 256
orbitally forced climate change, stable isotopes in
foraminifera 273–91
organic matter see carbon isotopes
oscillations
obliquity vs precession 163–4, 175–6
spectral analysis and direct cycle counts 168–76
oxygen isotopes, Blake Nose sites, Maastrichtian
117–18

Pacific, Allison Guyot (ODP Site 865), carbon isotope
records 204
Palaeocene–Eocene radiolarian faunas 185–224
see also radiolarian faunas
Palaeocene–Eocene transition 34–5
climate trends 10–13, 17–18
see also Late Palaeocene Thermal Maximum
Palaeogene, magnetic polarity time scale
biochronology 165
 calibration array 179
Danian stage 164–6
palygorskite clays, Eocene deep-water sediments, Blake
Nose sites 307–14
*Podorhabdus? elkefensis*, Upper Maastrichtian 106–7
polar stratospheric clouds (PSCs) 254–6
radiolarian faunas, Palaeocene–Eocene 185–224
across P–E boundary and LPTM interval 199–201
biostatigraphy and biochronology 188–91
first and last occurrences 188–90
hiatuses 197–9
lithostratigraphy 187–8
RP6, *Bekoma campechensis* Interval Zone 196
RP7, *Bekoma bidartensis* Interval Zone 196
RP8, *Buryella climata* Interval Zone 196
RP9, *Phormocyrtis striata* Interval Zone 195
RP10, *Theocytyle cryptocephala* Interval Zone 195
RP11, *Dictyopora mongolfieri* Interval Zone 195
RP12, *Thyrsocytyle (Pentalcorys) triacantha* Interval
Zone 194–5
RP13, *Podocytys (Podocyrtoges) ampla* Lineage
Zone 194
RP14, *Podocytys (Lampterygium) mitra* Lineage Zone
194
RP15, *Podocytys (Lampterygium) chalara* Lineage
Zone 193–4
RP16, *Podocytys (Lampterygium) goetheana* Interval
Zone 191
species list and taxonomic notes 208–220
systematics 202–8
Rock–Eval analysis 53
sea surface temperatures
Cretaceous 7–9
Mid–Eocene 279–87
modelling 257–60
responses to forcing 263–8
sedimentary organic matter (SOM) see Albian black
shale facies; carbon
seismic profiling 23–48
horizon A* 43–5
reflectors A, A, A 40–5
South Atlantic
Maud Rise (ODP Site 690), carbon isotope records
204
spreading rates 180
South Carolina Coastal Plain coreholes, correlation
with Blake Nose sites (ODP Leg 171B) 93–108
spherules see Chicxulub ejecta deposits
strontium, Cretaceous–Tertiary/Palaeogene
(K–T/C–P) boundary 138
upwelling 263, 266
wetlands, climate variability in early Palaeogene 254
X-ray fluorescence (XRF) scanning, Danian 167–8