The Archaeology of Geological Catastrophes
Special Publication reviewing procedures

The Society makes every effort to ensure that the scientific and production quality of its books matches that of its journals. Since 1997, all book proposals have been refereed by specialist reviewers as well as by the Society's Publications Committee. If the referees identify weaknesses in the proposal, these must be addressed before the proposal is accepted.

Once the book is accepted, the Society has a team of series editors (listed above) who ensure that the volume editors follow strict guidelines on refereeing and quality control. We insist that individual papers can only be accepted after satisfactory review by two independent referees. The questions on the review forms are similar to those for the Journal of the Geological Society. The referees' forms and comments must be available to the Society’s series editors on request.

Although many of the books result from meetings, the editors are expected to commission papers that were not presented at the meeting to ensure that the book provides a balanced coverage of the subject. Being accepted for presentation at the meeting does not guarantee inclusion in the book.

Geological Society Special Publications are included in the ISI Science Citation Index, but they do not have an impact factor, the latter being applicable only to journals.

More information about submitting a proposal and producing a Special Publication can be found on the Society’s web site: www.geolsoc.org.uk

It is recommended that reference to all or part of this book should be made in one of the following ways:

The Archaeology of Geological Catastrophes

EDITED BY

W. J. McGUIRE
University College London, UK

D. R. GRIFFITHS
University College London/Institute of Archaeology, UK

P. L. HANCOCK
University of Bristol, UK

I. S. STEWART
Brunel University, UK

2000
Published by
The Geological Society
London
THE GEOLOGICAL SOCIETY

The Geological Society of London was founded in 1807 and is the oldest geological society in the world. It received its Royal Charter in 1825 for the purpose of ‘investigating the mineral structure of the Earth’ and is now Britain’s national society for geology.

Both a learned society and a professional body, the Geological Society is recognized by the Department of Trade and Industry (DTI) as the chartering authority for geoscience, able to award Chartered Geologist status upon appropriately qualified Fellows. The Society has a membership of 8600, of whom about 1500 live outside the UK.

Fellowship of the Society is open to those holding a recognized honours degree in geology or cognate subject and who have at least two years’ relevant postgraduate experience, or who have not less than six years’ relevant experience in geology or a cognate subject. A Fellow with a minimum of five years’ relevant postgraduate experience in the practice of geology may apply for chartered status. Successful applicants are entitled to use the designatory postnominal CGeol (Chartered Geologist). Fellows of the Society may use the letters FGS. Other grades of membership are available to members not yet qualifying for Fellowship.

The Society has its own publishing house based in Bath, UK. It produces the Society's international journals, books and maps, and is the European distributor for publications of the American Association of Petroleum Geologists, (AAPG), the Society for Sedimentary Geology (SEPM) and the Geological Society of America (GSA). Members of the Society can buy books at considerable discounts. The Publishing House has an online bookshop (http://bookshop.geolsoc.org.uk).

Further information on Society membership may be obtained from the Membership Services Manager, The Geological Society, Burlington House, Piccadilly, London W1V 0JU, UK. (Email: enquiries@geolsoc.org.uk: tel: +44 (0)171 434 9944).

The Society’s Web Site can be found at http://www.geolsoc.org.uk/. The Society is a Registered Charity, number 210161.

Published by The Geological Society from:
The Geological Society Publishing House
Unit 7, Brassmill Enterprise Centre
Brassmill Lane
Bath BA1 3JN, UK

(Orders: Tel. +44 (0)1225 445046
Fax +44 (0)1225 442836)
Online bookshop: http://bookshop.geolsoc.org.uk

First published 2000

The publishers make no representation, express or implied, with regard to the accuracy of the information contained in this book and cannot accept any legal responsibility for any errors or omissions that may be made.

© The Geological Society of London 2000. All rights reserved. No reproduction, copy or transmission of this publication may be made without written permission. No paragraph of this publication may be reproduced, copied or transmitted save with the provisions of the Copyright Licensing Agency, 90 Tottenham Court Road, London W1P 9HE. Users registered with the Copyright Clearance Center, 27 Congress Street, Salem, MA 01970, USA: the item-fee code for this publication is 0305-8719/99/$15.00.

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library.

ISBN 1-86239-062-2

Typeset by Aarontype Ltd, Bristol, UK
Printed by The Alden Press, Osney Mead, Oxford, UK

Distributors

USA
AAPG Bookstore
PO Box 979
Tulsa
OK 74101-0979
USA
Orders: Tel. +1 918 584-2555
Fax +1 918 560-2652
e-mail: bookstore@aapg.org

Australia
Australian Mineral Foundation Bookshop
63 Conyngham Street
Glenfield
South Australia 5065
Australia
Orders: Tel. +61 88 379-0444
Fax +61 88 379-4634
e-mail: bookshop@amf.com.au

India
Affiliated East-West Press Pvt Ltd
G-1/16 Ansari Road, Daryaganj,
New Delhi 110 002
India
Orders: Tel. +91 11 327-9113
Fax +91 11 326-0538
e-mail: affiliate@nda.vsnl.net.in

Japan
Kanda Book Trading Co.
Cityhouse Tama 204
Tsurumaki 1-3-10
Tama-shi
Tokyo 206-0034
Japan
Orders: Tel. +81 (0)423 57-7650
Fax +81 (0)423 57-7651
Contents

Preface vii

HANCOCK, P. L., CHALMERS, R. M. L., ALTUNEL, E., ÇAKIR, Z. & BECHER-HANCOCK, A. Creation and destruction of travertine monumental stone by earthquake faulting at Hierapolis, Turkey 1

GRIFFITHS, D. R. Uses of volcanic products in antiquity 15

JONES, R. E & STIRO, S. C. The advent of archaeoseismology in the Mediterranean 25

BUCK, V. & STEWART, I. A critical reappraisal of the classical texts and archaeological evidence for earthquakes in the Atalanti region, central mainland Greece 33

GUIDOBONI, E., MUGGIA, A. & VALENSISE, G. Aims and methods in territorial archaeology: possible clues to a strong fourth-century AD earthquake in the Straits of Messina (southern Italy) 45

FRIEDRICH, W. L., SEIDENKRANTZ, M.-S. & NIELSEN, O. B. Santorini (Greece) before the Minoan eruption: a reconstruction of the ring-island, natural resources and clay deposits from the Akrotiri excavation 71

DRIESSEN, J. & MACDONALD, C. F. The eruption of the Santorini volcano and its effect on Minoan Crete 81

BICKNELL, P. Late Minoan IB marine ware, the marine environment of the Aegean, and the Bronze Age eruption of the Thera volcano 95

RUSSELL, J. K. & STASIUK, M. V. Ground-penetrating radar mapping of Minoan volcanic deposits and the Late Bronze Age palaeotopography, Thera, Greece 105

CIONI, R., GURIOLI, L., SBRANA, A. & VOUHIENKALAKIS, G. Precursory phenomena and destructive events related to the Late Bronze Age Minoan (Thera, Greece) and AD 79 (Vesuvius, Italy) Plinian eruptions; inferences from the stratigraphy in the archaeological areas 123

PARESCHI, M. T., STEFANI, G., VARONE, A., CAVARRA, L., GIANNINI, F. & MERIGGI, A. A geographical information system for the archaeological area of Pompeii 143

CIONI, R., LEVI, G. & SULPZIO, R. Apulian Bronze Age pottery as a long distance indicator of the Avellino Pumice eruption (Vesuvius, Italy) 159

CHESTER, D. K., DUNCAN, A. M., GUEST, J. E., JOHNSTON, P. A. & SMOLENAARS, J. J. L. Human response to Etna volcano during the classical period 179

KIRK, W. L., SIDDALL, R. & STEAD, S. The Johnston-Lavis collection: a unique record of Italian volcanism 189

PLUNKET, P. & URUÑUELA, G. The archaeology of a Plinian eruption of the Popocatépetl volcano 195

GONZALEZ, S., PASTRANA, A., SIEBE, C. & DULLER, G. Timing of the prehistoric eruption of Xitle Volcano and the abandonment of Cuicuilco Pyramid, Southern Basin of Mexico 205

TORRENCE, R., PAVLIDES, C., JACKSON, P. & WEBB, J. Volcanic disasters and cultural discontinuities in Holocene time, in West New Britain, Papua New Guinea 225

DODGSHON, R. A., GILBERTSON, D. D. & GRATTAN, J. P. Endemic stress, farming communities and the influence of Icelandic volcanic eruptions in the Scottish Highlands 267
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>JAMES, P., CHESTER, D. & DUNCAN, A. Volcanic soils: their nature and significance for archaeology</td>
<td>317</td>
</tr>
<tr>
<td>SIDDALL, R. The use of volcanlastic material in Roman hydraulic concretes: a brief review</td>
<td>339</td>
</tr>
<tr>
<td>HUNT, P. Olmec stone sculpture: selection criteria for basalt</td>
<td>345</td>
</tr>
<tr>
<td>HUGHES, R. & COLLINGS, A. Seismic and volcano hazards affecting the vulnerability of the Sana’a area of Yemen</td>
<td>355</td>
</tr>
<tr>
<td>WAELEKENS, M., SINTUBIN, M., MUCHEZ, P. & PAULISSEN, E. Archaeological, geomorphological and geological evidence for a major earthquake at Sagalassos (SW Turkey) around the middle of the seventh century AD</td>
<td>373</td>
</tr>
<tr>
<td>STIROS, S. C. Fault pattern of Nisyros Island volcano (Aegean Sea, Greece): structural, coastal and archaeological evidence</td>
<td>385</td>
</tr>
<tr>
<td>DE BOER, J. Z. & HALE, J. R. The geological origins of the oracle at Delphi, Greece</td>
<td>399</td>
</tr>
<tr>
<td>Index</td>
<td>413</td>
</tr>
</tbody>
</table>
Preface

The Archaeology of Geological Catastrophes brings together a diverse collection of papers that address the archaeological identification and cultural significance of large-scale geological events, mainly earthquakes and volcanic eruptions. Major earthquakes and volcanic eruptions typically recur at intervals of anything between a few decades to many tens to hundreds of thousands of years. Yet the instrumentation by which we record and monitor them has only been around for little over a century. To reduce the hazard posed by earthquakes and volcanism, we require a longer record of them than can be provided from modern instrumental snapshots. On the assumption that future earthquake and volcanic activity will be like that of the recent past, we need to understand the history of earthquakes and volcanism over millennial timescales. For the geologist, therefore, archaeology presents a potential tool to illuminate this time window, lying astride the documentary archives of historians and the geological archives of the surficial rock record. For the archaeologist, recognizing the impact of earthquakes or volcanic activity on a site or region more often provides a missing piece of the human history of that area, often explaining the conditions for cultural development or demise. In this context, an individual earthquake or volcanic eruption may often be the solution to an archaeologist's interpretation of inferred local or regional upheavals. By contrast, for the volcanologist or earthquake geologist, the identification of a major prehistorical seismic or volcanic event is generally the starting point from which to go on to derive other parameters (e.g. event magnitude, source etc.), or fit into regional models or datasets. For example, for archaeologists, the 464 BC earthquake at Sparta, Greece, was the trigger for a major change in political conditions in the Peloponnesian region; for earthquake geologists it provides key evidence to estimate the earthquake energy released on a major fault that has since been seismically quiescent (Armijo et al. 1991). Furthermore, this difference is more than simply one of perspective, since it is generally underpinned by contrasting philosophical and theoretical frameworks, by varying methodological approaches, and by practitioners using distinct terminologies and presenting results in widely differing forums.

In short, in many ways, archaeology and geology are fundamentally distinct disciplines. The distinction leads to uncertainty, or even suspicion, about studies that seek to integrate the two. Many seismologists, for example, will no doubt still...
empathize with comments made by Charles Richter 40 years ago, complaining that ‘Ancient accounts of earthquakes do not help us much; they are incomplete, and accuracy is usually sacrificed to make the most of a good story’ (Richter 1958, cited by Vita-Finzi 1986, p. 8). Guidoboni (1996) is more generous though equally cautious, noting that ‘Earthquakes are not kind, and they do not care for researchers. Their traces can travel through strata and upset methods for dating in unexpected ways. This is one reason why so many important pieces of archaeological evidence are lost for seismology’. To some extent, these criticisms may be less resonant for volcanic archaeology investigations, since eruptive activity frequently leaves geochemically or petrographically distinctive ‘event horizons’ (e.g. Riehle et al. this volume), or even volcanic deposits that preserve the archaeological record more or less intact (e.g. Gonzalez et al. this volume). By comparison, destruction horizons produced by seismic shaking must compete with the often comparable debris traces of warfare and natural collapse of poor constructions. In this regard, the focus in this volume on ‘catastrophes’ is less to do with the assumption that these events are inherently more important (or interesting) for our understanding of recent geological history or of our cultural heritage. Instead, it reflects the recognition that it is the large-magnitude geophysical events that are most likely to leave the clearest signals in the archaeological record. The diverse ways in which investigators may interpret those signals is arguably the main theme of this volume.

The Archaeology of Geological Catastrophes presents a broad spectrum of papers on the geoarchaeology of earthquakes and volcanoes, and here we draw attention only to a few general themes. Although earthquakes and volcanic eruptions are generally viewed as agents of destruction, numerous papers discuss their potential benefits to past cultures – providing materials for tools, building and sculpture, and even the fertile environmental conditions on which societies depended. Perhaps the most intriguing proposal is the suggestion that the power of the Delphic oracle to the ancient Greeks derived from the geological setting of the site, specifically from gaseous emissions from an underlying active fault. The bulk of contributions, however, focus on the destructive power of earthquakes and volcanoes. Several papers deal specifically with ‘archaeoseismology’ – the study of pre-instrumental earthquakes that, by affecting locations and their environments, have left their mark in the archaeological record. An important debate to emerge from these papers is whether major past earthquakes are more effectively recognized through regional disturbances in occupation or settlement patterns (territorial archaeology) or through the identification of ‘diagnostic’ structural indicators at individual sites. A suite of papers tackle different facets of arguably the most prominent geological catastrophe in the archaeological record – the Bronze Age eruption of Thera (Santorini, Greece) and its consequent regional impacts on Minoan culture. Human responses to major volcanic eruptions are also discussed, both in terms of local reactions to volcanism in Sicily and Mexico, and far-field effects, such as the impacts of Icelandic eruptive activity on agricultural demise in the Scottish Highlands. In turn, the value (and potential pitfalls) of historical records of past eruptive activity in documenting the capricious character of volcanism in an area are assessed in case studies from Italy, Germany, the Canary Islands and the Cape Verde islands. Other themes covered within the volume include the application of tephrachronology in volcanic archaeology, the value of volcanic soils in archaeological research, the use of geographic information systems in preserving vulnerable archaeological information
at key cultural sites and the assessment of the vulnerability of important cultural centres to seismic and volcanic threats.

To those that may dislike the eclectic character of this volume, the editors would argue that this only serves to reflect the rather disparate state-of-play within the burgeoning fields of earthquake and volcanic archaeology. Furthermore, the papers presented here show varying degrees of cross-disciplinary co-operation, but the bulk of the research is still largely being undertaken by archaeologists or by geologists working in relative isolation. It is hoped that by raising some important research questions, volumes like The Archaeology of Geological Catastrophes, will accelerate the move towards the type of interdisciplinary research advocated by Van Andel (1991, p. 324), in which historians, archaeologists and geologists (among others!) participate in a '... collaboration which assumes intensive exchange of information, ideas and procedures from the planning stage through to final publication'. Such collaborations are likely to be essential if the past societal impacts of earthquake and volcanic activity are to be effectively unravelled.

References

Iain Stewart
London, December 1999