The Geological Evolution of the Eastern Mediterranean
The Geological Evolution of the Eastern Mediterranean

EDITED BY

J. E. DIXON AND A. H. F. ROBERTSON
Dept of Geology & Geophysics
University of Edinburgh
UK

Published by
The Geological Society
London
THE GEOLOGICAL SOCIETY

The Society was founded in 1807 as The Geological Society of London and is the oldest geological society in the world. It received its Royal Charter in 1825 for the purpose of 'investigating the mineral structure of the Earth'. The Society is Britain's national society for geology with a membership of around 8000. It has countrywide coverage and approximately 1000 members reside overseas. The Society is responsible for all aspects of the geological sciences including professional matters. The Society has its own publishing house, which produces the Society's international journals, books and maps, and which acts as the European distributor for publications of the American Association of Petroleum Geologists, SEPM and the Geological Society of America.

Fellowship is open to those holding a recognised honours degree in geology or cognate subject and who have at least two years' relevant postgraduate experience, or who have not less than six years' relevant experience in geology or a cognate subject. A Fellow who has not less than five years' relevant postgraduate experience in the practice of geology may apply for validation and, subject to approval, may be able to use the designatory letters C Geol (Chartered Geologist).

Further information about the Society is available from the Membership Manager, The Geological Society, Burlington House, Piccadilly, London W1V 0JU, UK. The Society is a Registered Charity, No. 210161.
Preface

In the years since the 1977 Aegean conferences in Athens and Izmir there has been an explosion of new information on the Eastern Mediterranean, particularly on the Turkish area. Some three years ago we sensed that the time might be ripe for a meeting to consider all aspects of geology relevant to the tectonic evolution of the Eastern Mediterranean. We sounded out opinion in most of the European laboratories involved and received enthusiastic support for the idea. The boundaries of the area to be discussed were fixed early on: the Apennines to the west, the Carpathians and Caucasus to the north, the Zagros to the east and North Africa to the south. The meeting concentrated on the Late Palaeozoic to Recent evolution, as few coherent tracts of older rocks exist in the area.

The conference was held in Edinburgh from the 28 to 30 September 1982 and was attended by 220 scientists from 13 countries, 88 papers were read and 22 given in poster form. Sixty one contributions are published in this volume.

One of the key starting points of Eastern Mediterranean geology is deceptively easy to state. Several global reconstructions of the continents for Permian time indicate that a substantial tract of ocean, the 'Tethys', existed between Africa, and a Eurasian landmass to the north. Since little or none of this oceanic crust remains, the history of the Tethys from the Late Palaeozoic onwards must involve destruction of this ocean area. Perhaps surprisingly, however, the geology of the Eastern Mediterranean land areas is not dominated by this process but by the products of Mesozoic rifting and the formation and destruction of new oceanic basins. From this it is evident that closure of the Palaeozoic Tethyan ocean can not simply have involved subduction culminating in continental collision in the Neogene. Tectonic events must have involved comprehensive re-organizations of plate boundaries so that the distribution of continent and ocean is almost bound to have been complicated and frequently changing.

The book is organized by age of events discussed and by area within this framework, and it is in five sections. Following the editors' introductory chapter the first is concerned with early Mesozoic events linked to ocean closure and so by implication deals with the fate of the Palaeozoic Tethys or Palaeotethys. Later sections deal with events following the birth and growth of wholly Mesozoic ocean basins of the Neotethys. This division follows the interpretation of the contributors and is not inherently clear-cut. We use the term Palaeotethys to imply an ocean basin already in existence at the end of the Palaeozoic, but one that may have continued in existence in the Mesozoic and Tertiary. We argue, for example, in our own introductory chapter that the destruction of Palaeotethys in this sense was a long-drawn-out process lasting until Tertiary times, and even that early Mesozoic compressional events in the area, though related to Palaeotethyan subduction, could also have involved the formation of short-lived Neotethyan ocean basins. While questions of this kind dominate the book as a whole, much of the research documented here is also concerned with fundamental questions of continent–ocean dynamics. How do continental margins evolve from the early rift stage? Where are ophiolites formed and how are they emplaced? How do blueschist belts come to be created and exhumed? What is the relationship between consumption of oceanic crust and the construction of volcanic arcs? With its great geological diversity and relative accessibility the Eastern Mediterranean is an exceptionally valuable field laboratory, producing results complementary, for example, to those of the Deep Sea Drilling Project or marine geophysical exploration.

The reader will find disparity in the depth of knowledge and the coverage of different areas and processes. He may be disappointed that the jigsaw puzzle is not yet fully solved, but he may in return come to appreciate how many of the pieces are turning out to have the same pattern on them, and he may catch occasional glimpses of parts of the picture. He will also find amid the tentative models and the many expressions of uncertainty, flat contradictions and diametrically opposed interpretations. Perhaps these simply reflect the state of earth science a decade and a half after the plate-tectonic revolution. They are, none-the-less, a stimulus for us to question the validity of the ground rules. Do palaeomagnetic inclinations faithfully record palaeo-latitudes? Are ophiolites really remnants of oceanic crust, from marginal or any other kind of basin? Does calc-alkaline magmatism mean active subduction? Must blueschists and melanges also be linked to subduction? Whatever one's doubts, the philosophy behind a book like this is clear enough. Directing the contributors to the wider implications of their work should help progress towards greater
overall understanding which must come from the dynamic interaction of large-scale thinking and small-scale research.

ACKNOWLEDGEMENTS:
Esso Exploration Inc. provided generous financial support for which we are particularly grateful. Financial support was also received from BP.

We would like to thank Professor G. Y. Craig of the University of Edinburgh, Department of Geology, for making available to us the full range of departmental facilities both in initially organizing the conference, then editing this book. Our sincere thanks go to our secretaries Mrs M. Wright and Mrs H. Hooker for their unfailing help, particularly with retyping edited manuscripts. Mrs D. Baty assisted with photography and, together with Mrs F. Tullis, with drafting also.

Finally we wish to record out thanks to Mr N. Palmer of Blackwell Scientific Publications for his friendly advice and assistance at all stages.

Introduction to the reprint

Since its publication in 1984, *The Geological Evolution of the Eastern Mediterranean* has proved to be an invaluable aid to research in this important region. Many of the papers are classics that report basic data and tectonic interpretations that still remain valid today. The individual papers summarize a large amount of international research that was carried out in the Eastern Mediterranean region during the previous decade and this was the first attempt at overall synthesis. Those who have tried to obtain this book in the last few years have been disappointed, hence the decision to reprint. The editors have added an outline of the main research developments since 1984 and key references to the more recent literature. In addition, many of the figures in the chapter 'Introduction: aspects of the geological evolution of the Eastern Mediterranean' have been redrawn.
Recent research developments

The early 1980s saw the publication of several companion volumes on the Eastern Mediterranean region, both on land and beneath the sea. Aspects of the marine geology of the Mediterranean Basin were reported in 'Geological Evolution of the Mediterranean Basin' edited by Stanley and Wezel in 1985. In 1986, Dercourt et al. published an atlas of palaeogeographic maps of the Tethyan area which were accompanied by text, and incorporated data from the Eastern Mediterranean region. By the mid-1980s it was clear that different regional tectonic interpretations were mutually contradictory. Problematic aspects included the history of Africa–Eurasia plate motion, the nature of the crust beneath the Mediterranean Sea, and the origin of the ophiolites. This, in turn, stimulated an expansion of field-based research. The southern margin of Eurasia, represented by complex, often metamorphic terrains (e.g. the Pontides of N Turkey) emerged as a key study area. Attempts were renewed to resolve outstanding problems concerning the origin of Mesozoic ophiolites, particularly in the Greek and Turkish areas. Integrated field-based studies led to an improved understanding of the pattern of microplates that were rifted from Gondwana in the Early Mesozoic. The Eastern Mediterranean became established as one of the best areas in the world for study of processes of tectonic collision that include 'tectonic escape' and 'orogenic collapse'. In addition, much effort has recently gone into study of active and recently active tectonics, including seismicity and measurements of absolute plate motions. Finally, interest in the marine geology has received a boost from the return of the R.V. Joides Resolution to the Mediterranean Sea.

Selected references

Some of the main literature sources published since 1984 are indicated below.


Contents

Preface vii
Introduction to the reprint ix
Recent research developments xi

ROBERTSON, A. H. F. & DIXON, J. E. Introduction: aspects of the geological evolution of the Eastern Mediterranean 1

1. Palaeotethys

Editor's introduction 75

ŞENGÖR, A. M. C., YILMAZ, Y. & SUNGURLU, O. Tectonics of the Mediterranean Cimmerides: nature and evolution of the western termination of Palaeo-Tethys 77

MONOD, O. & AKAY, E. Evidence for a Late Triassic-Early Jurassic orogenic event in the Taurides 113

KEREY, I. E. Facies and tectonic setting of the Upper Carboniferous rocks of northwestern Turkey 123

DEMIRtasli, E. Stratigraphic evidence of Variscan and early Alpine tectonics in southern Turkey 129

2. Neotethys: Levant and North African offshore

Editor's introduction 147

DELAUN-MAYERE, M. Evolution of a Mesozoic passive continental margin: Baër-Bassit (NW Syria) 151

SESTINI, G. Tectonic and sedimentary history of the NE African margin (Egypt-Libya) 161

GvIRTZMAN, G. & WEISSBROD, T. The Hercynian geanticline of Helez and the Late Palaeozoic history of the Levant 177

GARFUNKEL, Z. & DERIN, B. Permian-early Mesozoic tectonism and continental margin formation in Israel and its implications for the history of the Eastern Mediterranean 187

DRUCKMAN, Y. Evidence for Early-Middle Triassic faulting and possible rifting from the Helez Deep Borehole in the coastal plain of Israel 203

ABED, A. M. Emergence of Wadi Mujib (Central Jordan) during Lower Cenomanian time and its regional tectonic implications 213

HIRSCH, F. The Arabian sub-plate during the Mesozoic 217

DELALOYE, M. & WAGNER, J.-J. Ophiolites and volcanic activity near the western edge of the Arabian plate 225

3. Neotethys: Turkey

Editor's introduction 235

POISSON, A. The extension of the Ionian trough into southwestern Turkey 241

ROBERTSON, A. H. F. & WOODCOCK, N. H. The SW segment of the Antalya complex, Turkey as a Mesozoic-Tertiary Tethyan continental margin 251

WALDRON, J. W. F. Structural history of the Antalya Complex in the 'Isparta angle', Southwest Turkey 273

HAYWARD, A. B. Miocene clastic sedimentation related to the emplacement of the Lycian Nappes and the Antalya Complex, SW Turkey 287
CONTENTS

WHITECHURCH, H., JUTEAU, T. & MONTIGNY, R. Role of the Eastern Mediterranean ophiolites (Turkey, Syria, Cyprus) in the history of the Neo-Tethys 301

REUBER, I. Mylonitic ductile shear zones within tectonites and cumulates as evidence for an oceanic transform fault in the Antalya ophiolite, SW Turkey 319

YILMAZ, P. O. Fossil and K-Ar data for the age of the Antalya Complex, SW Turkey 335

RICOU, L. E., MARCOUX, J. & WHITECHURCH, H. The Mesozoic organization of the Taurides: one or several ocean basins? 349

MICHAUD, A., WHITECHURCH, H., RICOU, L. E., MONTIGNY, R. & YAZGAN, E. Tauric subduction (Malatya-Elazig provinces) and its bearing on tectonics of the Tethyan realm in Turkey 361

AKTAS, G. & ROBERTSON, A. H. F. The Maden Complex, SE Turkey: evolution of a Neotethyan active margin 375

HELVACI, C. & GRIFFIN, W. L. Rb-Sr geochronology of the Bitlis Massif, Avnik (Bingöl) area, SE Turkey 403

AKINCI, O. T. The Eastern Pontide volcano-sedimentary belt and associated massive sulphide deposits 415

OKAY, A. I. & ÖZGÜL, N. HP/LT metamorphism and the structure of the Alanya Massif, Southern Turkey: an allochthonous composite tectonic sheet 429

NORMAN, T. N. The role of the Ankara Melange in the development of Anatolia (Turkey) 441

TANKUT, A. Basic and ultrabasic rocks from the Ankara Melange, Turkey 449

OKAY, A. I. Distribution and characteristics of the north-west Turkish blueschists 455

GÖRÜR, N., OKTAY, F. Y., SEYİM, I. & SENGÖR, A. M. C. Palaeo-tectonic evolution of the Tuzgölü basin complex, Central Turkey: sedimentary record of a Neo-Tethyan closure 467

LAUER, J. P. Geodynamic evolution of Turkey and Cyprus based on palaeomagnetic data 483

4. Neotethys: Greece and the Balkans

Editor's introduction 493

HALL, R., AUDLEY-CHARLES, M. G. & CARTER, D. J. The significance of Crete for the evolution of the Eastern Mediterranean 499

BONNEAU, M. Correlation of the Hellenides nappes in the south-east Aegean and their tectonic reconstruction 517

OKRUSCH, M., RICHTER, P. & KATSIKATSOS, G. High-pressure rocks of Samos, Greece 529

KATAGAS, C. G. High pressure metamorphism in Chiaros Island, Cyclades, Greece 537

RIDLEY, J. The significance of deformation associated with blueschist facies metamorphism on the Aegean island of Syros 545

PAPANIKOLAOU, D. J. The three metamorphic belts of the Hellenides: a review and a kinematic interpretation 551

PE-PIPER, G. & PIPER, D. J. W. Tectonic setting of the Mesozoic Pindos Basin of the Peloponnese, Greece 563

KEMP, A. E. S. & MCCAIG, A. M. Origins and significance of rocks in an imbricate thrust zone beneath the Pindos ophiolite, northwestern Greece 569
CONTENTS vii

MOUNTRAKIS, D. Structural evolution of the Pelagonian zone in northwestern Macedonia, Greece 581

JOCOBSHAGEN, V. & WALLBRECHER, E. Pre-Neogene nappe structure and metamorphism of the North Sporades and the southern Pelion peninsula 591

DIXON, J. E. & DIMTRIADIS, S. Metamorphosed ophiolitic rocks from the Serbo-Macedonian Massif, near Lake Volvi, north-east Greece 603

SPRAY, J. G., BÉBIEN, J., REX, D. C. & RODDICK, J. C. Age constraints on the igneous and metamorphic evolution of the Hellenic-Dinaric ophiolites 619

SMITH, A. G. & SPRAY, J. G. A half-ridge transform model for the Hellenic-Dinaric ophiolites 629

MÁRTON, E. Tectonic implications of palaeomagnetic results for the Carpatho-Balkan and adjacent areas 645

5. Neogene

Editor's introduction 655

STEININGER, F. F. & RÖGL, F. Paleogeography and palinspastic reconstructions of the Neogene of the Mediterranean and Paratethys 659

KISSEL, C., JAMET, M. & LAJ, C. Palaeomagnetic evidence of Miocene and Pliocene rotational deformations of the Aegean Area 669

KONDOPOULOU, D. & LAUER, J. P. Palaeomagnetic data from Tertiary units of the north Aegean zone 681

FYTIKAS, M., INNOCENTI, F., MANETTI, P., MAZZUOLI, R., PECCERILO, A. & VILLARI, L. Tertiary to Quaternary evolution of volcanism in the Aegean region (Central Greece) 687

MYRIANTHIS, M. L. Graben formation and associated seismicity in the Gulf of Korinth 701

LYBERIS, N. Tectonic evolution of the North Aegean trough 709

LE PICHON, X., LYBERIS, N. & ALVAREZ, F. Subsidence history of the North Aegean Trough 727

JACKSON, J. & MCKENZIE, D. Rotational mechanisms of active deformation in Greece and Iran 743

RIDLEY, J. Listric normal faulting and the reconstruction of the synmetamorphic structural pile of the Cyclades 755

BARKA, A. A. & HANCOCK, P. L. Neotectonic deformation patterns in the convex-northwards arc of the North Anatolian fault zone 763

QUENNELL, A. M. The Western Arabia rift system 775

JASKO, S. On the Neogene development of the Eastern Mediterranean basins 789

CHORIANOPOULOU, P., GALEOS, A. & IOAKIM, C. H. Pliocene lacustrine sediments in the volcanic succession of Almopias, Macedonia, Greece 795

CRAMP, A., COLLINS, M. B., WAKEFIELD, S. J. & BANNER, F. T. Sapropelic layers in the NW Aegean Sea 807

CHIOTIS, E. D. A middle Miocene thermal event in northern Greece confirmed by coalification measurements 815

FABRICIUS, F. H. Neogene to Quaternary geodynamics of the area of the Ionian Sea and surrounding land masses 819

Index 825