INDEX

Caesar’s Camp Gravels, reassessed 8
Calabrian level, ubiquitous nature of pervasive 49-50
calcrete 208
Cantalupe sequence 115
Carboniferous Limestone, Central Ireland, undated saprolitic/ palaeosol masses 58
Cardigan Buy Basin 68
‘Celtic Plain’, early Neogene 58
Central Europe, epeirogenic and block uplift, Late Tertiary 93
Central Range, Taiwan 170, 172
Cha Lang Valley 196
braid plain 187, 190, 192, 193, 196
faults, Guide Formation badlands 193, 194
Chalk
complexity of sedimentation and local variation in 30-31
preservation of outliers indicates long periods of morphostasis 12
rapid removal of 18
timing of denudation of 7
varying dates for exhumation of 40
see also Upper Chalk
Chalklands
divisible into morphotectonic regions 16
evolutionary geomorphology, a contemporary synthesis 16-20
morphostasis, late Palaeogene and Neogene 41
southern 2-3
Chambira Formation 245
Channel High 2
shows inversion 13
Channel Uplands, isolation of 16
Chattian and Miocene deposits, links with 5-150 m surfaces 55-58
Cherihor Formation 130
Cherichira Antcline 130, 135, 136, 136, 138
Cherichira Blind Thrust 133, 135, 136
Cherichira and Grigema drainage systems, evolution of 138-139
Cherichira Sole Thrust 135-137
tectonic uplift during reactivation of 138
Cherichira Thrust 130, 133-135, 136
Cinder cones, Dry Valleys region, slow erosion of 259
Clay-with-Flints 7, 11
climate
climatic environment, Taiwan 173-175
Eocene 19, 34
Gobi Desert 204
Irangi Hills 158
present and past, Antarctica 256, 258
regional and global, affected by the raising of Tibet 183
climatic cooling, throughout the Oligocene and Miocene 53
Closgrenan Formation 53
Coastal Range, Taiwan 169-170, 172
compression and crustal shortening 248
late Silurian 82
conifers 55
continental crust
anisotropy of 66-8
imposed stress, brittle and ductile crust, different behaviour 68
permanent record of geological events affecting it 67
continental plate boundary system 143
Cornubian massif 68
Cornubian terrane 67
Cornwall, west 51
wide 50-120 m surface, marine/ Pliocene view 45, 47

cosmogenic isotope data, Dry Valleys region 264-265
crustal basins, Scandinavia 86
crustal block movements, morphotectonic equilibrium 67
crustal discontinuity(ies)
major, between Snowdon and Anglesey–Arfon blocks 70
and the origins of major escarpments 68-69
strongly influence present landscapes 71
crustal movements, Irangi Hills 162
crustal thickening 184
associated with active collision 171, 173
cuesta topography, extra-glacial Chalklands 2-3
cuestas, developed on Upper and Lower Greensand 25
Culver Chalk 31
Curaray Formation, Late Miocene fauna 245
Cutucu Uplift 245
Danghe Nan Shan 184, 184
Danian 11
creation of Summit Surface implies rapid removal of Chalk 12
Dartmoor, as a monadnock 11
Datong Shan 184
Dead Sea Transform 143, 145
and Yammouneh Fault, plate tectonic and regional setting 144
Yammouneh Fault not active segment in Lebanon 150
decollements 250, 251
deforestation, Irangi Hills 158
deforation
compressive 170-171
Miocene see tectonism, Miocene
Nemegt Uul 215, 217
neotectonic, poorly understood, southern Argentina 229
denudation
Central Weald 38-39, 39
controlled by bedrock properties 105
gross, Tertiary, variations, southern England 32-33, 33
high rates of induced by extreme precipitation 172, 174
lithologically and structurally controlled 103-104
net, southern England, since end-Cretaceous 33
North Downs backslope benches 38, 39-40, 40
Pleistocene 18
Paleocene 32
Pleistocene 12, 28
Quaternary, reduced rates of 40-41
rates in the Northern Apennines 121-122
removal of Chalk cover, southern England 25
South Downs crest 38, 39-40, 40
denudation chronology studies 49-51
denudation rates, catchments in semi-arid areas 165
denudation rates, since end-Cretaceous 121-122
denudation rates, southern England since end-Cretaceous 121-122
denudation rates, since end-Cretaceous 121-122
denudation rates, since end-Cretaceous 121-122
Djebel Cherichira
aspects of stratigraphy 129, 131-132
location of 127, 128
structural uplift 128-129
structure of thrust front 132-137
tectonic evolution and structural uplift of thrust front at 132-137
topographic uplift and erosion of 137-138
Djebel Cherichira and Oued Grigema, uplift and erosional history of 127-142
Djebels, Triassic-cored, evolution of in Tunisia 129, 131-132
Doble Member 56
Dong Gou Grassland, Guide Basin 29
Dorking–Penshurst–Tonbridge–Biddenden axis 29
Douhou Louyang river 187, 190
Dover Straits 30
discordant, explanations 27
drainage
discordant 5, 27

drainage patterns
Irangi Hills, modified 161
southern England, accordant and discordant 7, 9
Weald, discordant and discordant 27, 27
Drum Hills, planation staircase system 49
Dry Valleys region, Antarctica active slope processes in coastal zone 258
climates past and present 256, 258
denudation rate estimates from cosmogenic isotope data 264-265
described 256
evidence demonstrating slow rate of landscape change 260-261
geological and tectonic setting 256
glacial landforms 264
INDEX

mean denudation rates very low 265
modification of landforms limited 265
morphological/depositional evidence of rates of landscape change 258-264
morphology of 256
persistent low temperature, hyper-aridity and low rates of landscape change 255-256
progress in geochronometric dating of landforms 255, 258-259
raised marine features 263-264
ductile creep 68
ductile crust, ductility increases with depth 67
dunes, and desert pavement, Nemegt 258
end Neogene datum, position of Eastern Longitudinal Valley, Taiwan 130
dynamic equilibrium 65
earthquakes
Atero River, uppermost reach 112
Boiano basin 115
Irangi Hills 161-162, 163, 163
Llwyn Peninsula 70
Qinghai Lake and Gonghe Basin 264
East Anglia, downwarping of 16, 19
East Africa Rift System 157, 158
progress in geochronometric dating of landforms 255, 258-259
raised marine features 263-264
ductile creep 68
ductile crust, ductility increases with depth 67
dunes, and desert pavement, Nemegt 258
end Neogene datum, position of Eastern Longitudinal Valley, Taiwan 130
dynamic equilibrium 65
earthquakes
Atero River, uppermost reach 112
Boiano basin 115
Irangi Hills 161-162, 163, 163
Llwyn Peninsula 70
Qinghai Lake and Gonghe Basin 264
East Anglia, downwarping of 16, 19
East Antarctic Ice Sheet 258
East Devon Plateau
Combeyme Soil remnants 11
summit mantled by residual soils 11
Eastern Cordillera (Cordillera Real), Ecuador 241, 242, 243-244, 244-245
planation surface 245
Eastern Longitudinal Valley, Taiwan 169, 170, 172
Ecuador, planation surfaces 239-253
El Bouqaia Depression 148, 151
El Houfia Extensional Faults 130
history of 137
end Neogene datum, position of 35-36, 36
endogenic energy 68
Eocene
sub-tropical climate 34
subaerial erosion in a hot climate 19
Equilibrium Line Altitude (ELA) depressions, Qinghai Nan Shan and Laji Shan 196
erosion assessment of using suspended sediment data 219
marine
Cenozoic 58
Eocene, link with London Basin Chalkland platforms rejected 8-9
Weald, pulses of in later Palaeogene 34
erosion cycle 68
erosional relief, East European Craton, development of 75
erosional surface, in broad region from Salisbury to Dartmoor 11-12
escarpments 66, 68-69
erosional 152
Jelania Gora basin 102
origins of and crustal discontinuities 68-69
separating Irangi Hills from Maasai plains 157
straight, associated with high-angle faults 240
Waltbrzych, Middle Sudetes, lithologically controlled 103
Westenberg Escarpment 78-79, 82
Western Cordillera, Ecuador 239
see also Snowdonia front scarp
Estonia, flatter hilly relief 75
eachplains, on stable blocks 71
eachplanation 17-18, 19, 105
dynamic 65
widely recognized in the tropics 18
eachsurfaces stripped, Irangi Hills 157
sub-Cretaceous 87-88
sub-Jurassic 87-88
Sudetic Foreland 97-101
a general view 101
Eurasian continental plate 169, 171
Evolutionary model 37, 39, 39
Faille du Pas de Calais 27 fault complexes/systems, strike-slip, left-lateral 184, 202
fault propagation fold see Cherichira Anticline
faulting
co-seismic 112
dip-slip 155
extenional, Guide Basin 193-194, 196, 198
Guide Basin 185, 190
normal 111
Guide Basin 194
Xining Basin 194
Quaternary, Nemegt Uul 215
strike-slip 170-171
transcurrent, Pluo-Quaternary, evidence against 147-152
fauxs 183
active, central and southern Italy 109
base Jurassic 26
Boiano basin 113, 115
dip at low angles into reflective lower crust 68
dip-slip normal 109
divide Irangi Hills into tectonic blocks 160
extenional
Ecuador 239, 244
El Houfia Extensional Faults 130, 148, 151
fan-like divergence 250
government of at depth, reconstruction 233, 233
normal, Guide Formation 193, 194
post-planation 251
pre-existing, reactivation of in brittle crust 67
reverse, Sierras Pampaneas 229, 230-231, 232, 235
sigmoidal curvature 203
strike-slip 248
see also thrust faults
Fennoscandian Shield 75, 76
basic relief types 87
differing amounts of Neogene and Palaeogene uplift 89
Ferrar dolerites 256
Ferrar Glacier 257
fill terraces 110
flexural subsidence 138
regional 128-129
flexuring early Palaeogene 3
mid-Tertiary 28
Flimston Outlier/Flimston Pipeclays 48, 56-57
floods, catastrophic, from cyclones 174
floras 53, 55
folds/folding
and faulting, contemporaneous, indications of 13
large, Nemegt Uul 204
Oligo-Miocene 36
plains-type, Baltic Oil-Shale Basin 77
small en echelon 28
foredeep
Northern Apennines 119-121, 121
foreland basin development 140
Fortuna Sandstone Formation 130, 131
Fucino basin case study 111-112, 112, 114, 116, 119
Gaohongai River 187, 188
incision into basin deposits 194, 197-198
Gash Breccias 48
geographical information systems 201
Ghab Fault 145
gibbsite 57
gravel beds, Dry Valleys region 264
glaciation, Quaternary in northeast Tibet, no firm evidence for 185
Gobi Altai Mountains 201, 202
North Gobi Altai 202
Gobi desert 204-205
Gobi Platform 184, 185
Gobi–Tien Shan fault system 201, 202, 202
goethite 57
Gonghe Lake Basin 184
gravels, siliclastic, covering Bosherston – Castlemartin Surface 48
age of 57
possibly a pediment 57
gravity sliding, Ecuadorian Andes 240
gravity spreading 249, 250
gravity tectonics, causing compressive folds and thrusts 249
Great Glen Fault 66, 67, 68, 70
Grigema Unconformity 130, 131, 135, 136
Grochowa Massif 95
Groomboodge–Benenden axis 29
Guayalabamba Gorge, Ecuadorian Andes 242
Guayalabamba Gorge, Ecuadorian Andes 242
Guajaquil-Babahojo-S. Domingo Fault 241
Guide Basin, Tibet 185
alluvial fans and terraces 190, 190, 192, 196
base-level lowering, due to Yellow River drainage 190
deposition of molasse in Miocene faulting 190
flysch deposits thrust and folded 185
loess accumulation, Surface 2 194
model for development of 197-198 molasse deposits suggest closed basin 193
reactivation of faults in Cenozoic 185
recent small-scale glaciation and deglaciation 195-196
Surface 1 192, 193, 197-198
surfaces developed in 188-189, 196, 198
Guide Dong Shan 185, 187, 188, 190
high piedmont terrace 190, 190, 193
incised alluvial fan 190, 196
scars attributable to faulting 190, 193
Surface 1 at foot of 193, 197-198
Guide Formation, described 185
Gwna Group 49

Haiyuan Fault 184
activity along 184-185
results of changes in trends 185
Haldon Hills 3, 11
Hampshire–Dieppe Basin 13, 16, 18
Hangay Dome 202
Hardy's multiquadric method 220
Hastings Beds 41
forming ‘High’ Weald 25
Haubi basin
catchment denudation rate calculated 163-164
highly accelerated soil erosion 166 increase in apparent sedimentation rate 163
Haubi, Lake
deposition profile 159, 161
formation of 161
severely degraded catchment 158
Headley Sand 3
fossiliferous ironstone problem 8
high-elevation surfaces, Dry Valleys Region 256
Hindhead 25

Hipparion cf. tchicoicum 185
Hipparion fassauti 185
Hipparion playfordi 185
hog's back ridges 2
Hollywood Outlier, Co. Laois, age of solution-subsidence infill 52-53, 58
homeomorphic 60
Homs Basalt 154
age of 150-151, 151
lies unconformably against Yammouneh Fault 150, 154
relationship to Yammouneh Fault 145, 147-150
relationships with shattered carbonates 150
Hythe Beds 25, 36
Iapetus Suture 66, 67
igneous bodies, Cuenca, Ecuador 246
Indian crust, underthrusting Tibetan Plateau 184
inherited landscapes and uplift, Sudetic Foreland 93-105
Inter-Andean Depression 240, 241, 242, 243-244
Inter-Andean Graben, ophiolites and volcanoes 248
Quaternary strato-volcanoes 246
Intermediate Atlas 128
intermontane basins
central Italy 111
compressional 184
intrusions
Andes, Ecuadorian 250
Sierras Pampeanas 238
Sudetic Foreland 95
Klodzko-Zloty Stok Granitoid Massif, Strzezgom-Sobota granitoid Massif
inversion structures see linear
inversion structures; upwarping inversion tectonics 28-29
framework for southern England 34
in the Weald 28, 29
Irangi Hills, Kondoa, Tanzania earthquakes, uplift and natural erosions 161-163
geology and climate 157-158
N-S fault scarps 157, 159
recent sedimentation and denudation rates 163-166
tectonics and drainage systems 159-161
topographic transects 159, 160
ironstone, fossiliferous 8
Isle of Wight Monocline 10, 18
isostatic readjustment/rebound 65, 123, 174
Italy, central, palaeolandsurfaces and recent tectonics 109-117
Izhora Heights 75, 77, 77
Jabel Akroum ridge 148, 151-152
Jason glacio-marine diamicton, evidence of 263
Jelania Gora intramontane basin 98
of complex origin 102
morphological boundary 102
relationships between landforms and bedrock properties 102
Jumbled–Naranjral Fault 139
K-Ar dating, Homs Basalt 150-151, 151, 155
Kang Zhou Shan, Guide Basin 187, 189-190, 189, 191
kaolinite, desilication of 57
Kenslow Clays 52
Kenslow flora, and evolution of the Pennines 51
Klodzko region 98
Klodzko-Zloty Stok Granitoid Massif 103, 104
bedrock-controlled topography 103, 104
Kredija Backthrust 130, 131, 136, 137
Kredija Strike-Slip Fault 130
age of 140
truncates El Houfia Extensional Faults and Cherichira Thrust 137

Laga Formation 119, 120
Laji Shan 185
land degradation, Irangi Hills 157
landform evolution, long-term, neglected 65
landforms
may help to unravel uplift and subsidence histories 93
pre-Devonian, Baltic Oil-Shale Basin 77-81
regional-scale, controlled by crustal properties 69
tectonic, stability of 155
landscape change, evidence demonstrating slow rate of 260-261
landscape development, models emphasising time-dependent landforms 71
landscape differentiation, pre-Neogene, in Europe 105
landscape evolution
part played by deep weathering 96-97
reached by Pleistocene ice-sheets 96
and solution subsidence 51-53
in Southern Mongolia 201-218
Sudetes
a new look at 102-105
and Sudetic Foreland, differing 96
Tertiary, new models of 10-13
landscape stability eastern Taiwan 169-181
extreme, Antarctica 255-267
landscapes, exhumed and partly buried 93
landslides, and rockfalls, triggered by heavy rain 174
Latvia
extensive tectonic deformation 75
short hiatus, Silurian to Devonian
Lebanon, landscape evolution in 143-156
preservation of landscapes 152-153
Leith Hill 25
Lenham Beds 3, 8
Lenham Beds incursion 20
Lenham surface, controversial 3
Lewes–Medway line 30
topography to East more subdued 36
linear inversion structures/axes/zones
13, 19, 29
compartmentalize southern
England 13-14, 34
linear zones of disturbance, Baltic
Oil-Shale Basin 77
lithological control
Chalklands 13
scarps around Walbrzych, Middle
Sudetes 103
lithosphere
role of reflective ductile lower crust
68
typical structure around and
beneath the British Isles 67
typical vertical structure 67-68
lixisols 163-164
Lleyn Peninsula earthquake 70
loessic cover, Sierra de San Luis
paleotransform 231-232
London Basin 13
estimating original thickness of
Chalk 31
platforms on flanks of 17-19, 19
Upper Chalk border 2
warping 35
see also Red Crag
London–Brabant Platform, no sub-
horizontal reflections 68
London–Brabant/Variscan Front, a
fundamental boundary 16
Long Plain Fault, a low-angle thrust
249
Longyang Gorge 194
Lower Chalk 2
lower crust, deforms along ductile
shears 68
Lower Greensand outcrops 35
lower-Langhian to Messinian
interval, two seismc sequences 140
Luzon Arc 169, 171, 173
Ma Wu Gorge 188
formation of 194
Macchiagodena sequence 115
Macigno Formation 119, 120
Mahmoud Formation 131, 132
Maidstone lineament 29
Mangan Formation 239
Manila Trench 169, 171
mantle intrusion 68
marine platform, Phlocene 3, 4, 8
marine shingles, age of changed 11
marine-cut surfaces, former, criteria
for recognition of 50
Marnoso Arenacea Formation 119,
120
mass movement, Nemegt Uul 205, 213
Mejerda Zone 128
Menai Straits Fault system 66, 67, 70
Menaian Surface/Platform 48-49, 70
and the Trwyn y Parc solution-
subsidence complex 57
mesas and buttes, Guide Basin 189,
189, 195
Metiaoui Formation 130
mica cooling ages, Larderello
geothermal field 121
Mio–Pliocene Peneplain 3, 5, 6
concept abandoned 35
non-existent in type area 7-8
mobile belts, British Isles involvement
with 66-67
Mogugu River 187, 188
incision into basin deposits 194,
197-198
scarp above terrace 190, 191, 195
Moho 68, 70
Mongolia, Southern, landscape
evolution 201-218
monoclines 13, 29
Isle of Wight 10, 18
morphogenetic systems, as closed
systems 65
morphostasis
Tertiary episodes, southern
England 33
Wealden area 40
morphotectonic regions 14, 16, 35
morphotectonic systems 68-71
morphotectonics 105
and Cenozoic history, Sudetic
Foreland 96
Mount Lebanon 145
northern margin 154
truncated spur on eastern flank of
145, 153
Mount Lebanon uplift, ancestral
boundary 152
Mount Marine Fault 112, 115
mountain ranges, orogenic 248-249
Muddus Plains 88
correlation with Palaeic surface,
Southern Scandes? 89
mushroom tectonics 249
Front Range, Colorado 248
Napo Uplift 245
Narva–Luga Lowland (Depression)
77-79, 82
Natural Pits, Hainault, Belgium 52
Nazca Plate, subduction segment 229,
232
Nemegt Uul, Southern Mongolia 201
a broad sigmoidal-shaped
restraining bend 202, 203
catchment areas 205, 210, 211
flower structure geometry 204, 215
geographical and structural setting
202, 204
geographical control of
sedimentary facies 217
geomorphology 204-215
mountain front sinuosity 205, 208,
215
differential tilting of
mountain range 217
rock types 203, 217
structural geology 203-204
Neogene land surface
height over Central Weald 36
position and disposition of 33
Neogene surfaces, extrapolation of
away from the London Basin 3, 5
Neotectonic Map of Italy 109
neotectonism, Plio-Pliocene 58
Netley Heath, bench a flexured facet
of Sub-Palaeogene Surface 8
New Downs Member
depositional climate 56
organic material yields Miocene
rock types 203, 208
Neogene microflora 47
represents a freshwater ecosystem
56
Niemce Hills 94
etchsurfaces 100-101, 101
North America, eastern, sediment
yields 219-228
North Downs
central, soils 8
Kent, Lenham surface 3
North Wales, concept of the
morphotectonic system 70-71
North–South Axis, Tunisia 127, 128
crustal and lithospheric thickness
129
Northern Scandes 86, 86, 88
Norwich Crag 16
Nummilites vascus marker horizon
131
oceanic–continental plate collision
zone 169
Ohio River 223, 224, 225
doil-shale deposits, commercial, Baltic
Oil-Shale Basin 76
Okinawa Trough 169, 171
oldland-oldland geomorphological
relationships, British Isles 60
ophiolite complexes
Memegt Uul 203
Sudetic Foreland 95
ophiolite suites, Lai Shan 185
Orodovician, Baltic Oil-Shale Basin 82
orogenesis, Andean 229
orogens, Precambrian, Ecuador
244-245
Oued Cherichira 130
basal Segui Formation
braided fluvial deposit 132
debris-flow deposit 138
facies change 138
drainage system
age of 138
an ephemeral wadi system 127,
129
antecedent system maintained its
base level 137, 138, 140
not displaced by Kredija Fault
138
INDEX 273
INDEX

Oued Cherichira (cont.)
time of formation 132

generation of structural uplift
137-138, 140

position of Cherichira Sole Thrust
137
time of formation 132, 140

Oued Griegema 130
cuts through Ain Grab Formation
139
debris-flow fan deposits of Segui
Formation 132, 139

fluvial features post-tectonic 139

similarities to Oued Cherichira 138

smaller ephemeral wadi system
128, 129

younger consequent drainage system
132, 140

outliers
Chalk 3

Palaeocene/Eocene 8

see also Ballygaddy Outlier;
Beacon Cottage Farm Outlier;
Flimston Outlier/Flimston Pipelays;
St Agnes Outlier;
St Erth Outlier

overland flow, Hortonian and saturated 174

Palaeocene
demolition then marine
encroachment 18

variation in erosion 32

Palaeocene–Eocene boundary, affects of choice of position 10

Palaeogene
distinction between stable areas and areas of pulsed uplift 34

late evolution of the Weald during 33-35

time of limited erosion 34

Palaeogene Denudation Model 3-5, 37, 38

Palaeogene residuals 3, 8, 32

Palaeogene sequences, London and Hampshire basins 31

palaeolandsurface development 232

palaeolandsurfaces
late Palaeogene and Neogene 40

Miocene, northern Bekaa, terminates at an erosional escarpment 152

and neotectonics, Argentina
229-238

and recent tectonics, central Italy
109-117

Pancanta Fault system, defined by secondary faults 235

Pandivere Heights 75, 77, 78, 81

Pantano Negro Fault 235

Pantano Negro Fault shear zone
235

partial melting 68

passive continental margins 65

Peak Hill Gravel 11

pediments, Irangi Hills 157-158

Peleus Till, Wright Valley, preservation of upper feather edge 264

Pembroke Peninsula see Boucherston–Castlemartin Surface

periclines
Cretaceous, becoming Tertiary
Monoclines 13

superimposed on Weald–Artois Anticline 25

Pewsey–London Platform inversion axis 13

important structural divide 16-17

Philippine Sea oceanic plate 169, 171

phosphorite layer, Baltic Oil-Shale Basin 76

Pinon Formation 239

Pinon Terrane 248

Pisayambo Formation 246

Pizzoli–Barete basin 112, 115

plains with residual hills, Scandinavia
87, 88

Northern Scandes 88

planated landscape elements 45

planation 55-58

double surfaces of see etchplanation

planation model, contradicted in Germany 105

planation surfaces divide pre-planation from post-planation tectonics 250-251

Ecuador 239-253

Irangi Hills 160

mark the end of tectonic regimes 248-249

Palaeogene and Miocene 105

separated by uplift phases, Sudetes 96

planed landscape, Palaeogene/Neogene age 58

plate tectonics
fail to account for growth of the Andes 249-250

and landform development 65

Taiwan 169-173

see also Tibet

Plateau Drift 7

platforms, Chiltern backslopes, structurally controlled 8

Pliocene
replacement of Northern Alpine foredeep 119

southern Chalklands coastline 3, 5

Po Plain–Adriatic Sea basin, volume of Holocene sediments deposited 121

poljes
Lebanon 155

pollen, Oligocene, Beacon Cottage Farm 47

polymeric surface, early Tertiary 10

polygynal cracking, Dry Valleys area, preservation of volcanic ash in 259, 262

Portezuelo Blanco Fault 234

Porth Swtan, saprolite pocket 49

Porth Wen, saprolite pocket 49

Portland–Wight inversion axis 13, 14

Portland–Wight–St Väley axis 14

post-uplift spreading see gravity spreading

Potomac River 220, 222, 223, 224, 225, 226

precipitation
Dry Valleys region 256, 258

high from tropical cyclones 173-174

pulsed tectonism 7, 10, 12, 18, 28, 34

pulsed tectonism model see Palaeogene Denudation Model

puna surface see planation surfaces, Ecuador

Qaidam Basin 184

Qilian Shan 184, 184, 202

Qing Shui river 187, 190

Qinghai Lake 184, 184

Qinghai Nan Shan 184

Quartermain Mountains 264

quartz, émoussé luisant textures 57

Quaternary

deduced rates of denudation 40-41

differential uplift, southern England 35-36

solutions lowering 36

stability during 353

Quaternary movements, and Tertiary tectonic episodes 16

rectilinear slopes 259, 265

Red Crag
deposition on marine-trimmed surface 35

eastward tilt 16

known extent of 15

marine incursion of limited geomorphological significance 9

westward extension 9

importance of 15-16

redbeds

Inter-Andean Depression 242

Sierras Pampeanas 230, 232

remnant landsurfaces, Apennines 110-111

remnant landsurface analysis, Facino basin 112

Reskajeage Surface 48

planation around the Palaeogene/Neogene boundary 56

Reyushui River 187

Rhew-y-cae, Flintshire, solution subsidence 51-52

river/stream capture 152, 153

Guide Basin 195

rivers
Irangi Hills ephemeral 160-161

sandbed 161

westward-flowing 161

Roccamandolfi sequence 115

Ross Embayment 256

Roum Fault
probably active transcurrent structure 155
seismicity focused on 145
Russian Platform 75, 76
Ryuku Arc 169, 171
Ryuku Arc tectonic regime 177
Ryuku collision event 171
Ryuku Trench 169, 171

St Agnes Outlier 56, 60
buried cliff line 47, 56
deposits
environment of deposition 56
fluviatile 47
possibly coeval to St Erth Outlier (Reid) 47
terrestrial and Miocene 48
organic material from New Downs Member 47
sub-Miocene unconformity 48, 56
St Agnes–Flimston–Trywn y Parc axis, control offered by 58
St Erth Outlier, Pliocene marine fauna in 47
St Georges Channel Basin 70
St Ives/Mount’s Bay depression 47
Salisbury Plain Chalklands 16
Santiago Terrane 248
Savannah planation theory 58
Saxaaf Formation 130, 131, 132
dated as Tortonian 131
tilting of 136
saprolites 71
Northern Apennine summits 122
and solution-subsidence 49, 55-58, 70
South Swedish Dome 86
stripped from Irangi Hills summits 157
stripping of, Sudetic Foreland 104
sarsens 3, 6, 10
Savannah planation theory 58
Scandinavia, mountains planated after Caledonian orogeny 251
Scandinavian domes, uplift histories revealed by 85-91
sub-Mesozoic etchsurfaces 87-88, 89
sea-level
eustatic fall, Middle Oligocene 34
lowering of, late Oligocene 55
seaways, interior Antarctica, early-middle Pliocene 258
secondary structures, growth of in mid-Tertiary 5
sediment yields
eastern North America 219-228
world’s rivers, and the global denudation system 226
sedimentation
late Upper Cretaceous, Tertiary style 13
Lower-Middle Pleistocene, Northern Apennines 122
Oligocene, extent unknown 10
sediments
Cenozoic 86
marine
Plio-Pleistocene, London Basin 9
Turonian, at altitude in the Sudetes 96
Oligocene, lack of 31
Oligocene 31, 48, 56
Palaogene
estimating thickness of removed sediments 31
thicknesses used in cross-sectional reconstruction 29, 32-33
terrestrial, Middle and Upper Eocene, lacking beneath Channel 34
Segui Formation 128, 130, 131, 139, 140
age 131
back-steepened 136
braided fluvial deposit 122, 128
debris-flow deposit 127, 138
near Oued Grigema watershed 132, 138
seismic activity
high frequency of associated with active collision 173
northeast Tibet 185
seismic shaking, vulnerability of rocks to 173
Serdj-Ressas Line 128
shield areas, interpretations of denudational history 85
Serra de San Luis 229-236
Sierras Pampeanas 128
Devonian intrusions 232
El Realito–Mesilla del Cura area 234, 234
geological setting 229-232
bounding faults and their relationships 230
Mesilla del Cura block 234
Neogene uplift 229
Palaeland surface 232-233
paleo-topographic surface, reconstruction of 233, 233
Rio Nagore area 234, 235, 235
uplift characteristics, contribution of palaeland surface analysis to 235-236
silcrete formation 10
Sirius Group 264
marine diatoms in 258
Slez Massif (Radunia) 94, 95
pre-Palaeogene topographic surfaces 94, 99-100
imperfect correlation bedrock structure-topography 99
septenite slope 99-100
slope failures, from torrential rain 174
slopes, rectilinear 256, 259, 265
Snowdonia, large topographic feature along a major crustal hinge 70
Snowdonia block 66, 70
Snowdonia front scarp, differing crustal types on either side 70
soil erosion 174
importance of climate for 166
Irangi Hills 157, 164
soils, inheritance from former Palaogene cover 8
solution features, density of on the Chalk 16, 17
solution pipes
pipe fills 3
Trywn y Parc 49, 57, 70
solution subsidence deposits/fills 51-53, 57, 70
Songba Gorge 194
Sour Shale 130
South American Craton 248
South Downs, establishment of sub-Palaogene overstep 13
South Downs inversion axis 14, 29
South Swedish Dome 86, 88
and its palaescsurfaces 89
last rise 87
post-uplift development of plains with residual hills 87
southern England, Tertiary evolution
axial differential uplift 10
importance of Neogene 36-37
inversion tectonics framework and argument for pulsed tectonism 14
long-term evolution of, important developments 13-16
low relief in Pliocene, inherited 28
new model of Tertiary landscape evolution 18-20
views of Green/Jones/Small, important differences 12-13
Southern Scandes 86, 88-89
stepped terrace sequences, Apennines 110
Sticklepath-Lustleigh Fault 66
Sticklepath-Lustleigh Fault Zone 67-68
storm surges 173
strath terraces 100-115
strato-volcanoes, Quaternary, Ecuador 246
stresses, anisotropic crust, controlled by lines of weakness 67, 68
strike-slip basin reactivation 140
structural basins, major further definition of 18-19
Jones/Small model 10
structural compartmentalization 34
determines morphotectonic regions 13-14
individual inversion axes may move independently 14
structural control, direct, lacking in Baltic Oil-Shale Basin 82
structural restlessness, mid Jurassic to end Tertiary 7
structure-drainage relationship, SE England 7
structures, inherited, control geometry of recent structures 67-68
Strzegom Hills 94
boreholes show unevenness of weathering front 97
inselberg-like landscape 97
Strzegom-Sobótka granitoid Massif 95

INDEX

275
INDEX

Strzegom-Sobótka granitoid Massif (cont.)
change in morphology correlates with internal differentiation 97, 99
etchsurfaces 97, 98, 99
granite altered to kaolinic mantle 97
Strzelin Fault 100
Sub-Andean Zone and Oriente, Ecuador 245
sub-Cambrian peneplain
Scandinavia 85
South Swedish Dome 87, 87
sub-Cenomanian surface 60
Sub-Eocene Surface 3, 4, 6, 11
tectonic deformation 3
see also Sub-Palaeogene Surface
sub-Inferior Oolite surface 60
sub-Liasic surface, Mendips 60
sub-Mesozoic unconformities 58, 60
Sub-Miocene facies 10
sub-Miocene unconformity, beneath St Agnes outlier 48, 56
Sub-Oligocene facies 10
Sub-Palaeogene Surface/
unconformity 3, 17
deduced position in relation to Chalk 29, 33
multi-faceted, polygenetic and diachronous 10, 11, 18
overstep and overlap relations 7, 8, 31-32
sub-Red Crag surface, planar nature of 16
sub-Tertiary unconformity 31-32
fossilized 10
subduction and the Andes 249-250
at Manila Trench 169
subsidence, continual 68
Sudetes 93, 94
almost total absence of Neogene sediments 96
basement geology similar to the Foreland 95
inherited component of landscape 104
a new look at landscape evolution 102-105
sedimentary rocks in 95
uplift
late Cenozoic 96
Neogene–Quaternary, and the mountain front 96
Sudetic Foreland 93, 94, 95-96
Sudetic Marginal Fault 94, 96
Summit Plain see Summit Surface
Summit Surface 5
debate on origin of 28
evolution under sub-tropical/warm temperate environment 12
incomplete dissection of 12
mantled with Clay-with-Flints 3
survived from early Palaeogene 11
superficial deposits 3
contrasting, separation of 11
tablelands
developed in Upper Greensand 3
Devon and Dorset 10-11
Taiwan
climatic environment 173-175
geological setting 169-173
recent palaeoenvironment 177
tectonic setting 169, 171
see also Taroko Gorge, Taiwan
talus deposits, Nemegt Uul 205, 213
Tanzania, landforms, erosion and deposition 157-168
earthquakes, uplift and natural erosion 161-163
geology and climate 157-158
recent sedimentation and denudation rates 163-166
studies on erosion and sedimentation in degraded catchments 166
tectonics and drainage systems 159-161
Taroko Gorge, Taiwan
computer modelling of evolution 177-180
formation of 176-177
probably on boundary between two tectonic zones 177
regional setting 175-176
rock types 176
sediment yield 176
stable form along length of 177
suspended sediment data 176
Tawonga Fault, a low angle thrust 249
Taylor Glacier 257
tectonics
compressional/compressive 170-171
contribution of ancient landsurface analysis in evaluation of 109-117
and drainage systems, Irangi Hills 159-161
Plio-Pleistocene, mountain building 251
see also inversion tectonics
tectonism
Cenozoic, northeast Tibet 183
Cretaceous 31
in long-term land/landscape development 65
mid-Tertiary 3, 12, 19, 33
Miocene 14, 31
deformation model 27-28, 37, 38
downgrading of 36-37
Guide Basin 185, 192
Neogene 232
reduced significance of 36
Palaeogene 18, 31
see also deformation
Tellian Atlas 127, 128
Tengchong Lateral Fault 130, 131, 132, 134
all movement pre-Segui Formation 132
probably formed synchronously with Cherichira Thrust 132, 134
reactivation of 135
uplifted by Cherichira Anticline 135
Tengchong Thrust 130, 132
terrace sequences
Aterno River, uppermost reach 113, 115
Boiano basin 115
Fucino basin 112, 114
terraces
developed above the Mogogou river 192, 195
development in Guide Basin may be related to climate change 195
terranes, exotic, Ecuador, case for 246, 248
Tertiary
active stress sources 36
southern England, evolutionary geomorphology 6
two periods of exhumation 14-15
Wooldridge and Linton, emphasis on stability 3
Tertiary landscape, new models of 10-13
thrust belts, structural uplift, topographic uplift and erosion in 128-129
thrust faults 185
Nemegt Uul 204, 208
thrust ramp angles, northern and central Tunisia 136
thrust stacking, causing regional flexural subsidence 128-129
thrust zone, Nemegt Uul 203
Tibet 143
northeast, geomorphology and uplift 183-200
geological structures 184
geomorphology south of the Yellow River 188-192
large-scale gravitational collapse unlikely 194
tectonic evolution, current opinions 184-185
see also Guide Basin
Tomoko Hills, probably never deforested 158
Tornquist Zone 86
Tower Wood Gravel 11
Transantarctic Mountains 256
structural components in the Dry Valleys area 256
transform–transform–trench junction 145
transgressions
late Pliocene 8
no evidence for in Wessex type area 9
possibility of two 8
St Erth 60
Pliocene, extent controversial 19
Red Crag 9, 15-16, 19, 35
no morphological evidence outside the London Basin 9
tree root exposures, Africa, measurements of show erosion rates 164
INDEX

Weald—Artois Anticline (cont.)
uplift and denudation of western
(Wealden) portion 25-43

Weald—Boulonnais—Artois horst
29-30
possible effect on Weald uplift 32
weathering
deep
of exhumed sub-Cambrian
penplain 87
and pre-Neogene landscape
evolution 96-97
grus weathering mantles 102
weathering residues 3
see also saprolites

Welsh Basin, northern edge marked
by Menai Straits Fault system
70

Wesenberg Escarpment, Narva—Luga
Depression 78-79
Wessex, end-Tertiary surface 36
western Britain and Ireland
boreholes penetrating Oligocene
outliers 53, 55
broad forested plain at Palaeogene/
Neogene boundary 60
Chattian sediments in freshwater
basins 58
Chattian/Miocene sedimentary
outliers and saprolites 54, 55-58
coastal planation surfaces 45-51

granite areas, elevated since the
Eocene 105
oldland fringes represent one of
oldest little-changed
landscapes 60
planar sub-Mesozoic
unconformities over lain by
marine sequences 58, 60
Western Cordillera, Ecuador 239-240,
241, 242
bevelled by planation surface 245
White Chalk
thickness at outcrop 2
variability in three dimensions 13
Wilkes-Pensacola Basin, possible
seaways across 258
Wilson cycles 250
WINCH 4 seismic profile, South Irish
Sea 70
winds, low humidity from the Polar
Plateau 258
Woollridge and Linton model 1-2,
3-5, 37, 38, 39, 49
Woolwich and Reading Beds,
overstepping 32
Wright Valley 263-264
Wuchia Landslide 174
Xining (Lake) Basin 184
normal faulting 194
Yam moun eFault 145-148, 150
follows valley of Wadi Chadra 147,
149
geological setting of 143-145
northern
drainage evolution, landscape
correlations across 151-152
inactive since the Miocene 143
valleys traced down to Miocene
palaeosurface, northern
Bekaa 151-152
Yam moun e polje 147
inherited feature 153
Yellow River
g geomorphology to south of
188-192
in the Guide Basin 185, 198
and the raising of Tibet 183
Yezhang Grassland, Guide Basin 188,
189
deposits beneath 194
fault scarps delimit extent of 193
northern edge, scarp with
triangular facets 190, 192, 193
Ying Yao Valley 187, 196
recent terraces onlap badlands 191,
192
Zhihai Shan 185, 187, 192
Zulova Highland/Massif 94, 95
inselberg landscape 97, 98
kaolin occurrences 97