Muds and Mudstones: Physical and Fluid-Flow Properties
It is recommended that reference to all or part of this book should be made in one of the following ways.

The Geological Society of London was founded in 1807 and is the oldest geological society in the world. It received its Royal Charter in 1825 for the purpose of ‘investigating the mineral structure of the Earth’ and is now Britain’s national society for geology.

Both a learned society and a professional body, the Geological Society is recognized by the Department of Trade and Industry (DTI) as the chartering authority for geoscience, able to award Chartered Geologist status upon appropriately qualified Fellows. The Society has a membership of 8600, of whom about 1500 live outside the UK.

Fellowship of the Society is open to persons holding a recognized honours degree in geology or a cognate subject and who have at least two years’ relevant postgraduate experience, or not less than six years’ relevant experience in geology or a cognate subject. A Fellow with a minimum of five years’ relevant postgraduate experience in the practice of geology may apply for chartered status. Successful applicants are entitled to use the designatory postnominal CGeol (Chartered Geologist). Fellows of the Society may use the letters FGS. Other grades of membership are available to members not yet qualifying for Fellowship.

The Society has its own Publishing House based in Bath, UK. It produces the Society’s international journals, books and maps, and is the European distributor for publications of the American Association of Petroleum Geologists (AAPG), the Society for Sedimentary Geology (SEPM) and the Geological Society of America (GSA). Members of the Society can buy books at considerable discounts. The Publishing House has an online bookshop (http://bookshop.geolsoc.org.uk)

Further information on Society membership may be obtained from the Membership Services Manager, The Geological Society, Burlington House, Piccadilly, London W1V 0JU (Email: enquiries@geolsoc.org.uk; tel: +44 (0)171 434 9944).

The Society’s Web Site can be found at http://www.geolsoc.org.uk/. The Society is a Registered Charity, number 210161.
Contents

APLIN, A. C., FLEET, A. J. & MACQUAKER, J. H. S. Muds and mudstones: physical and fluid-flow properties 1

Physical properties

PEARSON, F. J. What is the porosity of a mudrock? 9

DEWHURST, D. N., YANG, Y. & APLIN, A. C. Permeability and fluid flow in natural mudstones 23

MIDTØMME, K. & ROALDSET, E. Thermal conductivity of sedimentary rocks: uncertainties in measurement and modelling 45

PETLEY, D. N. Failure envelopes of mudrocks at high confining pressures 61

BJØRLYKKE, K. Principal aspects of compaction and fluid flow in mudstones 73

Experimental studies

CLENNELL, M. B., DEWHURST, D. N., BROWN, K. M. & WESTBROOK, G. K. Permeability anisotropy of consolidated clays 79

PETERS, M. G. & MALTMAN, A. J. Insights into the hydraulic performance of landfill-lining clays during deformation 97

HARRINGTON, J. F. & HORSEMAN, S. T. Gas transport properties of clays and mudrocks 107

Case Studies

INGRAM, G. M. & URAI, J. L. Top-seal leakage through faults and fractures: the role of mudrock properties 125

SKAR, T., VAN BALEN, R. T., ARNESON, L. & CLOETINGH, S. Origin of overpressures on the Halten Terrace, offshore mid-Norway: the potential role of mechanical compaction, pressure transfer and stress 137

DORSCH, J. & KATSUBE, T. J. Porosity characteristics of Cambrian mudrocks (Oak Ridge, East Tennessee, USA) and their implications for contaminant transport 157

WALRAEVEES, K. & CARDENAL, J. Preferential pathways in an Eocene clay: hydrogeological and hydrogeochemical evidence 175

Index 187