Index

Pages numbers in italics refer to figures or tables.

adularia-sericite gold deposits of Marmato, Colombia 4, 167–81
Cauco–Romeral fault system 167, 168, 171, 180
deformation events 171, 171, 180
fluid inclusions
distribution 177, 179
hydrothermal veins 177–8
microthermometry data 178–9, 180
quartz phenocrysts in dacite 176–7
geological framework of Marmato District 168–70, 168, 169
hydrothermal alteration 172, 173–4, 176
propylitization 176, 180
sericitization 176
zonation 179–80
mineral assemblages 174–6, 179–80
mineralization 171–6
boiling 179
occurrence 171–4
ore grades 174
vein petrography 170
geological setting 278–9
gregional geology 167–8
vein geometry 171
volcanic host rocks 169–70

Ballinalack Zn–Pb deposit 316, 317
basin evolution and structural control of
mineralization, central Ireland 277–301
basin development 279, 288–90, 299–300
faulting and mineralization 289–90, 289
syn-depositional faulting 288–9
basin reconstruction, present day 279, 280–4
basement configuration 282, 283–4, 283
information base 280–2, 280
isopachs 284, 285, 287
structural style 280, 282–3
basin restorations 279, 284–7, 284, 286
decomposition 285, 285
depositional settings 285–6
sequential geo-modelling 287
chronostratigraphic uncertainties 281–2, 299–300
Dublin Basin 278, 290
environment-of-deposition maps 284, 285–6
faults 283, 283, 290, 300
influence on mineralization 289–90, 289, 300, 301
syn-sedimentary 279, 284, 288–9, 300
fluid flow 277–8, 279, 300–1
geological setting 278–9
geophysical data 280
hydrogeological numerical simulations 279, 290–9
flux rates 299
model idealizations 290, 292–4, 293
numerical simulator (HYDRO) 294
simulation results 294–9, 295–8
Munster Basin 279, 290, 292, 297, 298–9
putative hydrogeological systems 277–8
stratigraphy and lithostratigraphic units 278–9, 281–2, 281
Waulsortian Limestones 277, 278, 284
see also structural controls; structural localization
Boulder–Lefroy Fault, Eastern Goldfields 124, 125–6, 126, 197, 202–3, 207, 208
capacity dimension see fractal dimension
Castello Branco, Portugal, vein system 7–8, 15
Coscuez emerald deposit, Colombia 4, 184–5, 184
D-values see power-law distributions
Eastern Goldfields Province, Yilgarn Block, Australia 123–38, 126, 197–209
faults and faulting
Boulder–Lefroy Fault 124, 125–6, 126, 197, 202–3, 207, 208
Cauco–Romeral Fault system 167, 168, 171, 180
dilational jogs 105–20, 134, 136, 185, 191, 193, 194
episodic slip (stick-slip) 4, 117, 134–6, 135
extensional regimes
Dublin Basin 239–40, 309
Irish Zn–Pb deposits 233–43, 268–9, 279, 283–4, 288–90, 290, 300–1, 313
Kambalda 205–6, 207–8, 208
Kutai Basin 225, 227–8, 230
quartz fibres 23–5, 23, 24, 26, 37
Fairy Hill Fault system 241–2, 241
hydrothermal breccia 183–94
implosion breccias 156, 191, 193
Keel Fault system 318
Keith–Kilkenny shear zone 125
Killoran Fault system 306, 309, 317
Lorrha Fault system 242
Obispo Fault 168, 171
Playa Fault 126
Witwatersrand 156–60, 156
fluid flow in basement rocks, Irish Zn–Pb deposits 5, 247–72
basement permeability 271–2
basement veins 250–5
age of formation 268–9
classification 250–1
mineralogy 252–5, 269
relation to basement faults 268–9
type 1 veins 251, 252–4, 269
types 2 and 3, veins 251, 254–5, 254, 269
vein geometry 254, 255
fluid inclusions 250, 257–72, 258, 265, 269–70
alkali geothermometry 267–8, 267, 268
analytical methods 255–7
classification 257
crush-leach analysis method 255
decrepitation analysis methods 255–7
fluid inclusion chemistry 264–7, 265, 266, 270–1, 272
fluid inclusion preservation 263
microthermometry 250, 255, 262, 263–4, 263, 265, 268
fluid flow in basement rocks, fluid inclusions (continued)
Navan sphalerite data
type 1 veins 257–61, 261, 262, 262
type 2 veins 257–63, 261, 262, 263–4, 263, 270
type 3, veins 261–2, 262, 263–4
geological setting 248–50
mineralization 248–50
regional geology 248, 249
mineral deposits
Lisheen 249–50, 255, 268, 269–70
Navan 249–50, 268, 269–70
Silvermines 248–50, 255, 259, 261, 263–4, 263, 270
Tynagh 249–50, 268, 269–70
ore genesis models 271–2
fluid flow dynamics, deformational controls in mesothermal gold systems 4, 123–38
Boulder-Lefroy fault system 124, 125–6, 126, 197
dilatant jogs 134, 136
episodic deformation and flow 134–7, 135
influence on mineralization 136–7
flow localization 130–2, 131, 134
fluid fluxes 129–30
fluid migration patterns 130
mesothermal gold deposit styles 125–9
network connectivity 130–2, 133
percolation 125
networks 132–4
ore deposition 132–4
threshold 132, 134, 137
permeability
anisotropy 134
below seismic-aseismic transition 134, 137
defformational controls 125, 130–1
regeneration by deformation 130–1
fluid flow localization 3, 5, 9–10, 69–70, 158
connected vein network development 9–10, 14–15
defformational controls 130–2, 134
dilational jogs 134
multifractal descriptions 77–9, 80
numerical modelling 70–80
see also fluid pathways
fluid inclusions
dolomitized limestones, Irish Midlands 307
epithermal gold deposits, Colombia 176–9, 177, 180
Irish base metal deposits 250, 250, 257–72, 258,
fluid pressures 191–3, 193
golden geology 183–4, 184
hybrid shear–dilational failure 191–2, 194
hydraulic fracturing 191–3
regional structure 185, 187
strain rate 185
thrust geometry 185, 191
thrust propagation 191–3, 192, 194
see also thrust-fracture network evolution
fractal analysis 7, 14, 61
box-counting procedures 30, 141, 142, 144–8
fractal dusts 4, 141, 147, 148, 149, 150–1
multifractal analysis of flow localization 77–9, 78, 80
percolation properties of veins 7–15
quartz vein spacing 27, 30, 31
roll-off 31, 144–7, 150
vein systems 3, 36, 40
see also fractal distribution of gold mines; power law distributions; vein systematics in line samples
fractal dimension (D) see power-law distributions
fractal distribution of gold mines, Zimbabwe 4, 141–51
data analysis
box-counting methods 141–4, 144, 145, 146
roll-off problems 144–7, 150
data sets 141–4, 142, 143, 144
exploration implications 148–50
fractal relationships 142–7, 150–1
applications in exploration 148–9
developments 147–8
greenstone belts 148, 148, 150
previous studies 147
fracture network modelling, Irish groundwater resources 4, 83–103
flowing fractures 91–7
hydraulic properties 86, 90–1, 95–7, 97, 102
identification 91–2
intensity 84, 92–3, 93, 94, 95, 97, 101
orientation 84, 94, 94
size 84, 94–5
spatial distribution 84, 95, 96
transmissivity 95, 97, 102
fracture geometry 84–6, 92–5
geological and geographical background, Newcastle West 86–9, 88, 89
resistivity surveys 88
stratigraphy and lithology 87, 87, 93
structure 87–9
hydrogeological conceptual model 89–91, 90, 91
modelling methodology 83–6, 85, 91, 102
numerical model 91–103
calibration 97, 99
flow simulations 97–102, 98, 100, 101
yield 99, 102
optimal borehole location and characteristics 97–103
site characterization 84
structural lineaments 88
fracture networks
backbone structures 9, 10, 132–4, 133, 137
critical differential stress 73–5, 78, 79, 80
load sharing 80
principal stress orientation 75–7, 76, 77
response to stress changes 73–5, 74, 76
mineralization 79–80
modelling methodology 70–3, 70, 71
flow rate (conductivity) calculations 72–3
geometry and connectivity of networks 70–2, 71
loading schemes 72, 72, 75–6
material properties 70, 72
UDEC modelling 70, 70
Galmoy Zn–Pb deposit 233, 234, 237, 238–9, 289, 303, 306, 317
gold mineralization
epithermal 57–66, 167–81
mesothermal 123–38
Witwatersrand 153–63
see also mineral deposits
gravity lineaments and Irish base metal deposits 313–20
Bouguer anomaly 315–19, 315
gravity lineaments 315, 316
magnitude and orientation 317, 318, 319
horizontal gravity gradients 315, 316
frequency distribution 316, 317
gradient correlations with lithofacies 318–19
gradients at deposit sites 317
relation to basement horst and graben 319
spatial correlations with base metal deposits 316–17
Keel Fault System 316
Navan mineralization age 314
regional geology 313–14, 314
Waulsortian mudbank facies 313, 318–20
groundwater resources see fracture network modelling Guanajuato gold deposit 39, 45, 51, 57–66, 58, 59
Harberton Bridge Zn–Pb deposit 289, 319
jogs, dilatant 105–20, 134, 136, 185, 187, 191, 193, 194
Kambalda–Kalgoorlie region, Yilgarn Craton, Western Australia 123–38, 126, 197–209
Keel Zn–Pb deposit 289, 300, 316
Killoran Fault system 307, 309, 317
Krafla Fissure Swarm, Iceland 203–4, 204, 205, 206
comparisons with Kambalda trough structures 205–7, 207
Kutai Basin, East Kalimantan see structural controls
La Codosera, Western Spain, mineralised vein system 8–9, 13, 13, 46
line sampling 7–8, 35–54, 60–1, 64
multiline sampling 61, 63–4
stockwork sampling 63, 64–5
Lisheen Zn–Pb deposit
age of mineralization 303, 306–9
fluid flow in basement rocks 249–50, 255, 268, 269–70
groundwater resources see fracture network modelling
gravity gradients 317
structural localization 233, 234, 237, 238–9
Marmato gold deposits see adularia-sericite gold deposits
mineral deposits 4–5, 79–80
emerald deposits, Colombia 4, 183–94
gold 4, 13
Curraghinalt, Northern Ireland 13, 13, 38–9, 51, 53
Eastern Goldfields Province, Yilgarn Block 125, 128–9, 134
Elandsrand Gold Mine, Witwatersrand, South Africa 153–63
Golden Mile, Yilgarn Craton 125, 128, 130
Guanajuato mining district, Mexico 57–66, 58, 59
Kalgoorlie–Kambalda area, Yilgarn Block, Australia 123–38
Kelian, Kutai Basin 214, 216, 220, 221, 229
La Codosera area, Spain 8–9, 13, 13, 46
Le Châtelet, Central France 39, 53
Marmato gold district, Colombia 167–81
Mount Muro, Kutai Basin 214, 220, 228, 229
Pine Creek Inlier, Australia 132–3
Porgera, Papua New Guinea 134
St Ives goldfield, Yilgarn Craton 125–9, 126, 127, 128
Zimbabwe craton 141–51
nickel, Kambalda, Yilgarn Craton 4, 197–209
tin/wolfram, Caceres district, Spain 13–14, 14
zinc/lead, Irish Midlands 5 233–43, 247–72, 303–9, 313–20
mineral fibres see quartz fibres
mineralization age of base metal deposits, Rathdowney Trend 303–9
diagenetic history of host rocks 306–9
dolomitized limestones 306–9, 307
K–Ar dating 303
Killoran Fault 306, 309
La Codosera, Western Spain, mineralised vein system 8–9, 13, 13, 46
line sampling 7–8, 35–54, 60–1, 64
multiline sampling 61, 63–4
stockwork sampling 63, 64–5
Lisheen Zn–Pb deposit
age of mineralization 303, 306–9
fluid flow in basement rocks 249–50, 255, 268, 269–70
groundwater resources see fracture network modelling
gravity gradients 317
structural localization 233, 234, 237, 238–9
Marmato gold deposits see adularia-sericite gold deposits
mineral deposits 4–5, 79–80
emerald deposits, Colombia 4, 183–94
gold 4, 13
Curraghinalt, Northern Ireland 13, 13, 38–9, 51, 53
Eastern Goldfields Province, Yilgarn Block 125, 128–9, 134
Elandsrand Gold Mine, Witwatersrand, South Africa 153–63
Golden Mile, Yilgarn Craton 125, 128, 130
Guanajuato mining district, Mexico 57–66, 58, 59
Kalgoorlie–Kambalda area, Yilgarn Block, Australia 123–38
Kelian, Kutai Basin 214, 216, 220, 221, 229
La Codosera area, Spain 8–9, 13, 13, 46
Le Châtelet, Central France 39, 53
Marmato gold district, Colombia 167–81
Mount Muro, Kutai Basin 214, 220, 228, 229
Pine Creek Inlier, Australia 132–3
Porgera, Papua New Guinea 134
St Ives goldfield, Yilgarn Craton 125–9, 126, 127, 128
Zimbabwe craton 141–51
nickel, Kambalda, Yilgarn Craton 4, 197–209
tin/wolfram, Caceres district, Spain 13–14, 14
zinc/lead, Irish Midlands 5 233–43, 247–72, 303–9, 313–20
mineral fibres see quartz fibres
mineralization age of base metal deposits, Rathdowney Trend 303–9
diagenetic history of host rocks 306–9
dolomitized limestones 306–9, 307
K–Ar dating 303
Killoran Fault 306, 309
mineralization age of base metal deposits, Rathdowney Trend (continued)

mineral deposits

Galmoy 303, 306
Lisheen 303, 306–9, 306
Navan 303–4, 306, 308, 309
Silvermines 303–5
Tynagh 303–5

calcareous limestones 303–6, 305
Regional Dolomite 306–9
regional geology 305
relation of mineralization to faulting 309
stratigraphy of mineralization host rocks 303–6, 305
Waulsortian limestones 303, 306–9

modelling

numerical

groundwater resources 83–103
hydrogeological simulations 290–9, 293, 295–8
UDEC code 70, 80
photoelastic 4, 105–20
see also fracture network modelling
Mohr stress diagrams 25, 26
Munster Basin 279, 290, 292, 297, 298–9
Muzzo emerald deposit, Colombia 4, 184–5, 184

Navan Zn-Pb deposit

age of mineralization 303–4, 306, 308, 309, 314
fluid flow in basement rocks 249–50, 268, 269–70
structural localization 233, 234, 238, 289
Newcastle West area, geological background 87–9
Newton Cashel Zn-Pb deposit 316, 317
nickel ore troughs in volcanic rocks, Kambalda 4, 197–209
Boulder-Lefroy Fault 197, 202, 203, 207, 208
Kambalda Dome 197, 200, 201, 202, 203, 203, 208
Krafla Fissure Swarm, Iceland 203–4, 204, 205
comparison with Kambalda Troughs 205–7, 207, 208
graben and tension fractures 203, 204, 205, 206, 207, 208
Lunnon Basalt–Kambalda Komatiite contact 199, 203, 205
Lunnon Trough 202, 203, 203
ore troughs (Kambalda Troughs) comparison with Krafla graben structures 205–7, 207, 208
deformation events 199, 205, 207–8
flow channels 202
graben structures 207, 209
linear geometry 198, 199, 200, 203, 207–8
localized fissure eruptions 201
post-ore deformation models 202–3
pre-existing volcanic topography (kipukas) 201, 202
syn-volcanic extensional model 205–6, 207–8, 208
thermal erosion 201–2, 202
previous work 197–202
regional structure 197–8, 199
stratigraphy 197, 198

Northern Volcanic Zone, Iceland 198, 203–4, 204, 205

Obispo Fault 168, 171

| percolation properties of veins and fractal analysis 3, 7–15
| infinite clusters 9, 10, 14
| vein thickness distributions
| damage zones of faults 10–13, 12, 13
| fracture network development 9–10
| ore grades 13–14
| rock alteration 15
| permeability, deformational controls 2–3, 69–70, 130–1, 134–6
| photoelastic modelling 4, 105–20
| power-law (fractal) distributions (D) 4, 7, 9, 10, 30–1, 62, 64–6
| flow localization 77–9, 78, 80
| gold mines in Zimbabwe 4, 141–51
| Kolmogorov model 43, 48–9, 50
| variations in vertical flow rates 77–9, 78, 80
| vein sizes 3, 7–15, 40, 42–7, 57
| vein spacing 3, 42–4, 47–8, 50
| vein thickness 3, 7–15, 40, 42, 45–7, 48, 50–4, 62–6
| quartz fibres 20–3, 20, 21, 23, 29, 31, 36
| orientation of extension direction 23–5, 23, 24, 26, 37
| quartz vein populations, Anglesey 17–31
| deposition conditions 22–3, 31
| fractal spacing 27, 30, 31
| geological setting 17–20, 18
| geometry and orientation 17–20, 19, 20, 31
| length-width relationships 27–30, 28, 29, 31
| population systematics 26–7
| quartz fibres see quartz fibres
| vein development and orientation 20, 24–6, 24, 25, 31
| vein mineralogy 20–3, 21
| vein spacing 30–1
| Rathdowney Trend, Ireland 238, 239, 303–9
| Rickardstown Zn-Pb deposit 314, 317
| seismic-aseismic transition 134–5
| Silvermines Zn-Pb deposit
| age of mineralization 303–5
| fluid flow in basement rocks 248–50, 255, 259, 261, 263–5, 268, 269
| gravity gradients 317
| structural localization 233, 234, 237, 238–9, 240–1, 289–90
| statistical analysis of vein distribution
| coefficient of variation 35, 42–3, 42, 48, 50
| cumulative vein density 64, 64
| cumulative vein spacing 42, 47–8
| cumulative vein thickness 7–9, 8, 11, 42, 45–7, 62–4, 65
| mass function (M(r)) 35, 43, 44, 48–9, 51
| staircase plots 41–2, 44–5
| strain function 43–4, 49, 51, 54
| stockworks
| Guanajuato district 38–9
| sampling 61, 63, 64–5
| structural controls on hydrocarbon and mineral deposits, Kutai Basin 213–30
| basement structure 4, 216–20, 230
| cleavage 219–20
fracture geometries 159–61
imbrication 156, 160, 161–3
implosion breccias 156
layer-parallel shearing 159, 163
shallow fractures, early 159
shallow fractures, late 161
steep fractures 159–61
geological setting 153–6, 154
pseudotachylites 158
structural siting of gold 158–9
thrust architecture and structural styles 154, 155, 156
thrust fracture system evolution 160, 161–3
Ventersdorp Contact Reef 153, 154
contact with lavas (palaeotopography) 156, 159, 159, 161, 162
fracture patterns 155, 158, 160–1, 161, 162, 163
mineralization 156, 158–9, 159–61, 160, 161, 162, 163
see also fluidized hydrothermal breccia
Tynagh Zn–Pb deposit
age of mineralization 305–7
fluid flow in basement rocks 249–50, 268, 269–70
structural localization 253, 234, 237, 238–9, 289
vein size, scaling systematics, Guanajuato mining district 57–66
data collection and processing 59–62
fault patterns 58–9, 60, 61
geological background 57–9
line sampling strategies 60–5, 62
stratigraphy 57–8, 59
structural controls on mineralization 58–9, 61
vein thickness distribution 62–6, 63
vein systematics in line samples, influence of layering 35–54
analytical techniques 41–4
extrapolation from line samples 52, 54
fractal properties 36, 40, 42–3
ore mineralization 53
sample localities and geological settings 36–9, 38
sampling technique 39
stress distribution 52–3, 54
synthetic data sets 36, 39–41, 40, 54
vein data 36–9, 44–50
vein systems (arrays; populations) 7, 36
carbonate, South Head, Wick 12–13
clusters 9, 10, 14, 30–1, 35, 42–3, 53–4, 66
in damage zones of faults 10–13, 12, 13
fractal properties 3, 36, 40
mineralized
Caceres district, Spain 13–14, 14
Curraghinh, Northern Ireland 13, 13, 38–9, 51, 53
Guanajuato, Mexico 39, 45, 51, 57–66
La Codosera, Spain 8–9, 13, 46
Le Châtelet, Central France 39, 49, 51, 53
Mace Head, Ireland 38
quartz
Anglesey 17–31
Burren, Ireland 38, 47, 50
Castello Branco, Portugal 7–8, 15
Kilve, Somerset 11, 11
Millook Haven/Crackington Haven, North Cornwall 12, 36–7, 45, 48, 53
Ogmore, South Wales 38

fracture patterns (lineaments) 216–20, 218, 219
joint data 218, 220
multiple deformation episodes 219–20
shear zones 219–20
gold deposits 213, 214, 216, 220, 221, 228, 229, 230
gravity interpretation (Bouguer maps) 220–3, 221
Belayan Axis 221, 227
Kedang Kepala High 221
Kedang–Kepala Axis (Bengelon lineament) 221, 223, 227, 228
Kutai Lakes Gravity High 220–1
Helmut-Khombeng horst block 227, 229
lithostratigraphy 215, 216
magnetic anomalies 223
SAR (synthetic aperture radar) 216–20, 217
structural interpretation 216–18, 218, 222, 223–5
Tertiary geology of basin 213–30
evolution 226, 227–30
extensional faulting 213, 216, 225, 227–8, 230
genesis of mineral and hydrocarbon deposits 4, 227–30
geoseismic profiles 223, 224, 225–7, 228
Gongnyay and Gergaji Anticlines 222, 223–4, 225, 228
graben structures 227–9
integration of data sets 225–7
inversion of extensional system 229–30
rifting 216, 218, 229
volcanic episodes 216, 218–19, 220, 229
Wahau Anticline 222, 223–4, 227, 228
see also basin evolution; structural localization
structural localization of syndiagenetic Zn-Pb deposits, Irish Midlands 5, 233–43
Carboniferous stratigraphy and structure 233–6, 235
Arundian Stage 233, 234–6
Chadian stage 233, 234
Courceyan stage 233, 234
Hercynian orogeny 233, 236, 239
Holkerian-Brigantian stages 236
Crinkill prospect 241–2, 241
Dublin Basin 234, 235, 239–40, 240
Fairy Hill Fault system 241–2, 241
Fairy Hill Inlier 240–2, 241
geochronometric scale 234
implications for exploration 242–3
Lorcha Fault system 242
mineral deposits 233, 234, 237, 238–9, 240–1, 242
mineral exploration 242–3
palaeogeography 235, 236
Rathdowney Trend 238, 239
Shannon Trough 234
structural control of Zn-Pb deposits 236–9
fault geometry 238
fault patterns 238–9, 238
Variscan deformation 236, 236, 239–43, 240
Waulsortian Limestone 234, 239
see also basin evolution; structural controls
thrust-fracture network evolution and gold mineralization, Witwatersrand 4, 153–63
fault rocks 156–60, 156
vein systems (arrays; populations), quartz (continued)
 Three Cliffs Bay, South Wales 38
 Westward Ho!, North Devon 38, 45, 48, 49
thickness distributions 7–15, 8, 10, 35, 50–2, 62–6
fractal dimension (power-law scaling exponent)
 3, 7–15, 8, 15, 35, 50–2, 62–6
fracture networks 9–13
mineralized veins 13–14, 15
statistical analysis 41–2, 45–7
vein spacing 30–1, 35
analytical techniques 42, 47–8
power-law (fractal) distribution 3, 30–1, 42–4, 47–8
stratabound and non-stratabound 3, 36, 45, 46, 47–9, 49, 51–3, 52

Waulsortian Limestones and equivalents 277–8, 303
dolomitization 306–7, 308, 309
groundwater resources 87
mineralization host rocks in Shannon and Dublin Basins 234, 239, 303, 313
sedimentation influenced by tectonics 318–20
Witwatersrand 153–63

Yilgarn Block (Craton), Australia 124–30, 124, 126, 134–6, 197–209