The Oil and Gas Habitats of the South Atlantic
Cover illustration. GEOSAT satellite free-air gravity image for the southern Atlantic region. Illumination is from the north. Total gravity colour range is -100 to $+40$ mgals (see gravity legend of Fig. 1, Karner & Driscoll). Gravity contours less than -100 mgals are coloured black whilst contours greater than $+40$ mgals are white. The free-air gravity anomaly, because it is dominated by near-field density contrasts, is particularly useful for defining the general bathymetry and structure of both thinned continental and oceanic crust. For example, the present-day mid-Atlantic ridge spreading centre, ridge jumps, fracture zone trends, continental margin rift structures and their continuity, the ocean/continent boundary, the 'edge-effect' anomaly that characterizes the shelf break, hot-spot traces, and possible reactivation structures are clearly delineated. Further, the early opening trends of magnetic quiet zone oceanic crust are well-imaged, allowing for improved plate tectonic reconstructions for this early part of the post-rift history to be mapped. Four hotspots have likely influenced significantly oceanic crust chemistry and thickness during the late Cretaceous period. From south to north, these hotspots are Tristan da Cunha, Saint Helena, Ascension, and Fernando de Noronha. Note also that the large river deltas (e.g. Congo, Niger, Ogooué and São Francisco) are all associated with extreme positive gravity anomalies, reflecting the large flexural strength of the underlying lithosphere at the time of loading (see Karner & Driscoll, pages 11-40, for details).

It is recommended that reference to all or part of this book should be made in one of the following ways:

The Oil and Gas Habitats of the South Atlantic

EDITED BY

N. R. CAMERON
Imperial College of Science, Technology and Medicine
London
UK

R. H. BATE
Lacustrine Basin Research Ltd
Ansty
UK

V. S. CLURE
Technical Outsourcing
Wantage
UK

1999
Published by
The Geological Society
London
THE GEOLOGICAL SOCIETY

The Society was founded in 1807 as The Geological Society of London and is the oldest geological society in the world. It received its Royal Charter in 1825 for the purpose of ‘investigating the mineral structure of the Earth’. The Society is Britain’s national society for geology with a membership of around 8500. It has countrywide coverage and approximately 1500 members reside overseas. The Society is responsible for all aspects of the geological sciences including professional matters. The Society has its own publishing house, which produces the Society’s international journals, books and maps, and which acts as the European distributor for publications of the American Association of Petroleum Geologists, SEPM and the Geological Society of America.

Fellowship is open to those holding a recognized honours degree in geology or cognate subject and who have at least two years’ relevant postgraduate experience, or who have not less than six years’ relevant experience in geology or a cognate subject. A Fellow who has not less than five years’ relevant postgraduate experience in the practice of geology may apply for validation and, subject to approval, may be able to use the designatory letters C Geol (Chartered Geologist).

Further information about the Society is available from the Membership Manager, The Geological Society, Burlington House, Piccadilly, London W1V 0JU, UK. The Society is a Registered Charity, No. 210161.

Published by The Geological Society from:
The Geological Society Publishing House
Unit 7, Brassmill Enterprise Centre
Brassmill Lane
Bath BA1 3JN
UK
(Orders: Tel. 01225 445046
Fax 01225 442836)

First published 1999

The publishers make no representation, express or implied, with regard to the accuracy of the information contained in this book and cannot accept any legal responsibility for any errors or omissions that may be made.

© The Geological Society of London 1999. All rights reserved. No reproduction, copy or transmission of this publication may be made without written permission.
No paragraph of this publication may be reproduced, copied or transmitted save with the provisions of the Copyright Licensing Agency, 90 Tottenham Court Road, London W1P 9HE. Users registered with the Copyright Clearance Center, 27 Congress Street, Salem, MA 01970, USA: the item-fee code for this publication is 0305-8719/99/$15.00.

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library.

ISBN 1-86239-030-4
ISSN 0305-8719

Typeset by Cambridge University Press, Cambridge, UK
Printed by Cambridge University Press, Cambridge, UK

Distributors
USA
AAPG Bookstore
PO Box 979
Tulsa
OK 74101-0979
USA
(Orders: Tel. (918) 584-2555
Fax (918) 560-2652)

Australia
Australian Mineral Foundation
63 Conyngham Street
Glenside
South Australia 5065
Australia
(Orders: Tel. (08) 379-0444
Fax (08) 379-4634)

India
Affiliated East-West Press PVT Ltd
G-1/16 Ansari Road
New Delhi 110 002
India
(Orders: Tel. (11) 327-9113
Fax (11) 326-0538)

Japan
Kanda Book Trading Co.
Cityhouse Tama 204
Tsurumaki 1-3-10
Tama-Shi
Tokyo 0206-0034
Japan
(Orders: Tel. (0423) 57-7650
Fax (0423) 57-7651)
Contents

Cameron, N. R., Bate, R. H., Clure, V. S. & Benton, J. Oil and gas habitats of the South Atlantic: Introduction 1

The geological and geophysical framework

Karner, G. D. & Driscoll, N. W. Tectonic and stratigraphic development of the West African and eastern Brazilian Margins: insights from quantitative basin modelling 11

Gallagher, K. & Brown, R. The Mesozoic denudation history of the Atlantic margins of southern Africa and southeast Brazil and the relationship to offshore sedimentation 41

Darros de Matos, R. M. History of the northeast Brazilian rift system: kinetic implications for the break-up between Brazil and West Africa 55

Røsendahl, B. R. & Groschel-Becker, H. Deep seismic structure of the continental margin in the Gulf of Guinea: a summary report 75

Crossley, R. & Cripps, D. Templates from mainland Africa and the Red Sea for interpreting the early evolution of the South Atlantic 85

Oil and gas habitats

Dolan, P. Western Africa: an unfinished story of oil and gas exploration 97

Coward, M. P., Purdy, E. G., Ries, A. C. & Smith, D. G. The distribution of petroleum reserves in basins of the South Atlantic margins 101

Davison, I. Tectonics and hydrocarbon distribution along the Brazilian South Atlantic margin 133

Jungslager, E. H. A. Petroleum habitats of the Atlantic margin of South Africa 153

Organic geochemistry

Schieffelin, C. F., Zumberge, J. E., Cameron, N. R. & Brown, S. W. Petroleum systems in the South Atlantic margins 169

Burwood, R. Angola: source rock control for Lower Congo Coastal and Kwanza Basin petroleum systems 181

Applications

Holbourn, A., Kuhnt, W., El Albani, A., Pletsch, T., Luderer F. & Wagner, T. Upper Cretaceous palaeoenvironments and benthonic foraminiferal assemblages of potential source rocks from the western African margin, Central Atlantic 195

El Albani, A., Kuhnt, W., Luderer, F., Herbin, J. P. & Caron, M. Palaeoenvironmental evolution of the Late Cretaceous sequence in the Tarfaya Basin (southwest of Morocco) 223

Wagner, T. & Pletsch, T. Tectono-sedimentary controls on Cretaceous black shale deposition along the opening of the Equatorial Atlantic Gateway (ODP Leg 159) 241

Preece, R. C., Kaminski, M. A. & Dignes, T. W. Miocene benthonic foraminiferal morphogroups in an oxygen minimum zone, offshore Cabinda 267

Bate, R. H. Non-marine ostracod assemblages of the Pre-Salt rift basins of West Africa and their role in sequence stratigraphy 283
DINGLE, R. V. Walvis Ridge barrier: its influence on palaeoenvironments and source rock generation deduced from ostracod distributions in the early South Atlantic Ocean

Exploration studies and issues

TURNER, J. P. Detachment faulting and petroleum prospectivity in the Rio Muni Basin, Equatorial Guinea, West Africa

BAGGULEY, J. & PROSSER, S. The interpretation of passive margin depositional processes using seismic stratigraphy: examples from offshore Namibia

STANISTREET, I. G. & STOLLHOFEN, H. Onshore equivalents of the main Kudu gas reservoir in Namibia

JERRAM, D. A., MOUNTNEY, N. & STOLLHOFEN, H. Facies architecture of the Etjo Sandstone Formation and its interaction with the Basal Etendeka Flood Basalts of northwest Namibia: implications for offshore prospectivity

CLEMSON, J., CARTWRIGHT, J. & SWART, R. The Namib Rift: a rift system of possible Karoo age, offshore Namibia

BARKER, P. F. Falkland Plateau evolution and a mobile southernmost South America

MEADOWS, N. S. Basin evolution and sedimentary fill in the Palaeozoic sequences of the Falkland Islands

Index