Index

Page numbers in italics refer to Figures and Tables

Allan diagrams xv, xvi, xvii, 98, 284, 290
Arches National Park, Utah 158–88, 159, 160
Are Formation, Heidrun Field 270
attribute maps and modelling ix, 2, 5, 7–9, 20–1, 27–8, 36, 37–9, 48–9
amplitude 7, 13, 14, 15, 18, 19, 21, 22, 23
correlation 9, 15, 18–20
dip azimuth 9, 30, 36, 38, 41–2, 42, 45, 48–9
dip change 30–3, 31, 36, 38–42, 38, 42, 44, 45–7, 49
dip magnitude ix, 7, 11, 13, 14, 15, 18–19
fault delineation 30–3, 36, 38, 39, 41–2, 42, 45, 48–9
strike 9
see also
fault identification; small fault distribution
biostratigraphical data, modelling fault throw 75
borehole images 44, 44
advantages and limitations 71–3, 72, 82–4
fracture aperture measurements 80–1, 84
integration with other data 73–5, 84
interpretation 73–5, 73, 82–3, 85
Brushy Basin member, Morrison Formation 89, 95
BSE (back-scattered electron microscopy) 107, 118
Cache Valley, Arches National Park 159, 184
Carboneras Fault, Spain 147, 155
 cataclasism, and porosity 234
cataclasites 91–6, 273, 287, 288, 290–1, 293, 295
enhanced quartz cementation 126
permeability 121–2, 121, 122, 127, 129–30, 277–81, 288
phyllosilicates 121, 123, 126–8
porosity collapse 126–8
pressure solution 121–2, 123
quartz cementation 119, 120–2, 124, 125–6, 129–30
cathode luminescence imagery (CL) 118
Cedar Mountain Formation 89, 94, 95
cemented deformation features 124–5, 128, 130, 287, 288
permeability 158, 168, 287
Chase Group 193
Chinle Formation 89, 95
clay (shale, phyllosilicate) smears 75–6, 78, 79, 84, 129–30, 273, 287–8, 291, 293–6
borehole imagery 75
calculations 98–9
clay gouge ratio (CGR) 98, 129, 284, 295
clay smear potential (CSP) 129, 295
in clay-rich sediments 123, 135, 140, 287
permeability 123, 291
pressure solution 114
shale (clay) smear factor (SSF) 123, 128
threshold pressures 288
see also
shaly fault gouge
Claymore Sandstone Member, Kimmeridge Clay Formation 78, 82
Conoco Borehole Test Facility 193–4, 194, 198
Curtis Formation 89, 96
Cutler Group 89, 94–5
damage zones see fault damage zones
Darcy’s law 136, 232
Delicate Arch area, Arches National Park 160, 162–5, 166, 168, 171, 183–8
Dewey Bridge member, Entrada Sandstone 89, 99, 163
drawdown in faulted sandstone 157–88
analogue reservoir 162–5, 176, 183–8, 166, 168
deforation bands 158, 160, 162–3, 166, 168, 171–6, 184, 187, 188
deviations from radial drawdown 167–83, 171, 174, 178, 182, 184–7
fault relays 160, 178, 180–3, 181
Delicate Arch area 182, 183–7, 186
faults 158, 160, 184, 187, 188
flow path prediction 157–8
joints 158, 160, 162–5, 166, 174, 176–80, 184, 187, 188
linear high and low permeability zones 165–83, 169
anastomizing zones of deformation bands 172–6, 173
discontinuous overlapping faults (fault relays) 176, 178, 180–7, 181, 182, 188
joints intersecting deformation bands 174, 176–80, 177
poorly connected joints 168–70, 171, 173
transient flow paths 167, 173, 177, 186, 187
methodology 158–9, 160–2
permeability 162
deforation bands 158, 168
slip planes 158, 159, 163, 167, 180–3, 187
porosity 158, 163
reservoir inhomogeneities 158, 160, 162, 188
distortion of radial drawdown pattern 159
hydraulic conductivity 162, 187
transmissivity 162, 163, 165
simulation technique 160–2
slip planes 158, 159–60, 160, 163, 184, 187
footwall permeability 158, 183–0, 187
storativities 162
Entrada Sandstone Formation 89, 158, 159, 162–5
Fangst Group, Heidrun Field 270
Fateh Field, Arabian Gulf 299–312
fault analysis viii, viii, 48, 48, 200–1, 202, 270–81
fault compaction in fault zone evolution 231–41
fault scaling 231, 232, 237–41, 240
fluid flow modelling 232–7
compaction 233–4, 235–6, 237, 240
fluid diffusion 234–7
limitations 239
relation to earlier work 232
frictional failure 231, 232–3, 236–7, 237, 238
dilatant hardening 236
event magnitude 236
frequency-magnitude distribution 236–7, 238
permeability 235–6, 237–9
and scale length 239–40
pore fluid pressure 237–9, 239
fault compaction in fault zone evolution cont’d
cased by porosity reduction 233, 234, 235
simulation process 235–6
sub-seismic fault populations 231
fault controlled communication in Sleipner Vest Field
283–97
fault damage zones viii–xii, ix, x, xi, xiv-xv, 71, 76–7, 89, 273
fluid flow 217–18, 220, 222, 224, 226
fault gouges
clay gouge ratio (CGR) 98–100, 99, 129, 284, 295
clay smear potential (CSP) 129, 295
gouge ratio (GR) 291, 295
grain-size reduction 127
porosity 234
slip planes 119–20, 119, 127
see also gas permeability; shaley fault gouge
fault growth in tensorial 3D simulation 209–15
anti-plane and in-plane strain 213–14, 213, 214
fault interactions 209–10
fractal scaling properties 209–10
methodology 212–13
model 211–12
boundary conditions 211–12, 214
dynamics 211
healing and the static case 212
loading and rupture cycles 212
rheology 211
outlet zones 222–3, 225
pore fluid effects 214–15
rupture 210, 211, 212, 215
simulation patterns 213–14, 213, 214
small-strain limitations 210, 214, 215
tensorial formulation of strains and stresses 210
fault identification and mapping from seismic data
1–24, 31–3
amplitude anomalies 3–5, 4, 5, 6–7, 13, 18–19, 21, 23
attribute maps 2, 5, 7, 18, 20–1
amplitude 7, 13, 14, 15, 18, 18–19, 21, 22, 23
azimuth 9
correlation 9, 15, 18–20
dip 7, 11, 13, 14, 15, 18–19
strike 9
automatic fault mapping 22–4
dip anomalies 7–8, 13, 19
directional illumination 7, 11
relay structures 13
dip change 3, 5
fault identification on attribute maps 7–9
Fresnel zones 3, 6, 7, 9, 13
Gullfaks Field 2, 9
Gullveig Field 9, 11, 13–20, 15, 16, 21
line-graphs 6–7, 10, 18, 19, 19, 22, 23
mapping in 3D 20–1
methods for fault identification in section 2–5
Ness1 reflector, Brent Group 9–13, 11, 15–17, 18–19, 18, 21
relay structures 13, 22, 23
seismic imaging process, multi-channel 3, 4
seismic modelling methodology 5–7
input parameters 6
interpretation 6–7
seismic sections, synthetic 6–7, 9, 13, 16, 17, 18–19, 21
Siri Fault Zone 9, 13, 13, 14
stochastic modelling 2, 6
input parameters 22
Tampen Spur, North Viking Graben 9, 21
time structure maps 9
see also small fault distribution
fault sealing processes in siliciclastic sediments xiii, xv, 117–31
cataclastic fault rocks (cataclasites)
effects of stress field 127, 131
permeability 121–2, 121, 122, 128
porosity collapse 126–8
quartz cementation 119, 120–2, 124, 125–6, 128–9, 130
cemented deformation features 124–5, 128
cemented fractures 128–9
clay smears 123, 273
continuity 129
permeability 123, 129, 288
deformation-induced mixing 121, 122, 123, 125, 131
experimental methodology 118–19
experimental results 118–25
fault rocks
classification 129–30, 130, 273
within clay-rich sediments 123, 129
within sandstones
clay 119–21, 126–7
impure 121–2, 126, 129
with low clay content 121
framework-phyllosilicate fault rocks 122, 130, 273, 287, 288
grain-size reduction 120–1, 128, 131
permeability
cataclasites 121–2, 122, 123, 126–8, 129–30
clay smears 128–9
decrease with increasing strain 127
quartz cementation 125
quartz-cemented water escape features 124, 124
pore aperture size 118, 125
pressure solution in cataclastic faults 121–2, 123
INDEX 315

threshold pressure determination 118, 123
water permeability 118–19
fault seals 74, 84, 125–31, 270–3, 284–5, 287–8, 291, 295
borehole images see sealing faults on borehole images
cementation 78–9, 82, 84, 97, 125–6, 128–9, 130
clay lined (shaley gouge) 75–6, 78, 79, 84, 91–101, 129, 130
clay (phyllosilicate) smears 75–8, 78, 79, 84, 129–30, 273
evaluation viii, x, xv–xvii, xvi, xvii, xviii, xix
threshold pressure determination 118, 123
water permeability 118–19
faults flow along fault planes 79
linkage 51, 60–1
offset population analysis x–xi, xii
propagation through carbonate rocks 105–6
radial propagation 51, 60–1, 62
segmentation 51, 54, 60–1, 64–6, 163
structural feature frequency linked to offset x
ip propagation ix, 51–2, 54, 60–2
tip-to-parent linkage 60–1, 62, 64, 66, 67
see also fracture models; fractured reservoirs; fluid flow in steep faults; propagation processes; sealing faults; small fault distribution
faults and pressure solution see fault sealing processes; pressure solution seams
Flamborough Head, faults in chalk 106, 111, 112, 114
fluid flow
carbonate reservoir 304–5
effect of deformation structures 158
modelling 135, 162–5, 232–7
numerical modelling of transient single phase flow 160–2
pressure perturbations 159–60, 176, 182
tortuosity of flow path xiv, 113, 154, 281, 158
see also drawdown in faulted sandstone; faulting and fluid flow in Heidrun Field; fluid flow in steep faults; molecular transport and fluid flow; rock-fluid interaction
fluid flow in steep faults, thermal effects of 217–26
basin fill permeabilities 220, 221, 221, 222, 223
convection systems within sedimentary units 221–2, 223, 224, 225
within-fault zone and whole-system 220, 223, 223
fault damage zones 217–18, 220, 222, 224, 226
fault outlet zones 222–3, 225
fault zone permeabilities 220, 222, 222, 223, 226, 226
relation to fault zone width 220–1
modelling methods 218
North Sea Central Graben 218, 219, 222–3
regional-scale model 225
structural cross section 219
temperature profiles 219, 226
overpressure 225–6
salt piercement structures 224
simple grid model 220–2, 221, 223
temperature anomalies 218, 220, 221, 222, 222, 223, 226
see also faults and pressure solution seams; molecular transport; rock-fluid interactions
Fort Riley Limestone 193
fracture properties of fault systems 209–10, 231
fracture models in a carbonate reservoir 304–5
borehole images see sealing faults on borehole images
background geology 299–300, 301
creastal position 309
database 300–3, 302
facies
grain-supported and matrix-supported 300, 303, 304–5, 305, 308–9, 308
index 308–9
related to fracture density 304–5, 308
fluid flow characteristics 304–5
well productivity variability 304, 305
fracture models in a carbonate reservoir cont’d

fracture density modelling and prediction 307, 307, 308–9, 308, 310, 311
fracture distribution, influence of faulting and curvature 304
fracture and facies characteristics 303–4, 303
glacial and rock property modelling 307–9
Ilam Formation 299–312
macrofractures, flow disruptive 303–4
macrofractures, hairline 303–4, 305
fracture density 304, 305
influenced by proximity to faulting 304
orientation relative to stress field 304
mesofractures 303–4
permeability, related to fracture density 304–5
porosity, unrelated to permeability 300
porosity model 309
reservoir geology 299–300
stratigraphy 301
structural curvature 305, 305, 308–9, 308
fractured reservoirs, characterization of 193–207
Conoco Borehole Test Facility (CBTF) 193–4, 194, 198
regional fault pattern 194
stratigraphy 195
well array 197
Fort Riley Limestone 193–4, 196, 197, 201, 204–6, 208
fracture pattern 193, 196, 205
interference tests 194–7
drawdown and recovery curves 195–7, 198
inverse modelling of data 197–201, 200, 201, 202
observed and calculated drawdown 199, 199
inverse modelling
ensemble analysis 200–1, 202
equivalent discontinuum models 197–200. 199, 200, 208
variable aperture lattice models 200–1, 201, 202, 208
zero matrix permeability assumption, effects of 206–7
methodology
crosswell seismic experiments 201–2, 202
interference tests 194–5
inverse modelling 198–9
single well reflection profiling 204, 204
seismic experiments 201–5, 207–8
air injection 201, 206
crosswell experiments 201–4, 203, 204, 208
single well reflection profiling 204–5, 204, 205, 208
simulated annealing algorithm 198–9, 200
slant well drilling to locate fracture 205–6, 206, 207
see also drawdown in faulted sandstone

Garden area, Arches National Park 163, 165, 168
gas permeability of clay-bearing fault gouge 147–55
apparatus 150
argon gas as pore fluid 149, 152
fault gouge microstructures 147, 148, 153, 154, 155
effects on permeability 152, 153, 153
measurement techniques 149–51
permeability anisotropy 152, 153, 154, 155
reduction with sequential pressure cycling 151–2, 152, 154, 155
test for time-dependent compaction 151–2, 152
permeability measurements
pore pressure oscillation method 149–50, 151
pulse transient method 149–50, 151
previous work, comparison with 152–4
sample collection and preparation 147–9
temperature effects 154–5
tests for short-circuit fluid pathway 150–1, 151
gas permeametry 118
graben formation
experimental 52–61, 53, 54
Niger Delta 63–4
Gullfaks Field, Tampen Spur 2, 9
Gullvag Field, Tampen Spur 9, 11, 13–20, 15, 16, 21
Heidrun Field, Norwegian Sea see faulting and fluid flow
Honaker Trail Formation 94, 98
Hugin Formation, Sleipner Vest Field 283
hydraulic conductivity 162, 167, 187, 261–8
tests 118–19
hydraulic conductivity within rocks, piecewise homogenous 261–8
boundary element solution of the direct problem 261, 262–4
experimental set-up 262, 262
least-squares minimization technique 266–7
mathematical model 262
sensitivity coefficients 264–6, 265
Ilam Formation, Fateh Field 299
juxtaposition seals 272–3, 276, 277, 288, 290
graphical analysis xv–xvi, xvi, xvii, xviii, 98–9, 99, 284, 289
Kayenta Formation 89
Kimmeridge Clay Formation 78
Landau theory 257–9
Lilstock, faults in limestone 35, 106, 107, 111, 114
mercury porosimetry 118, 137, 143, 143, 275
Moab Fault Zone, Utah 87–101
characteristics 89–91, 90
fault zone components 91–6
fluid flow along fault zone 100–1
lateral complexity 94–6, 101
membrane seals 97–100
ratio of fault throw to fault zone thickness 96, 97, 101
regional context 88–9, 88
sequence/throw juxtaposition diagrams 98–9, 99
slip indicators 89–91
slip zones 89, 91, 95–6, 97, 101
throw partitioning 98, 100
throw-profiles 89
transects across fault 87, 89, 93, 94–6, 94, 98
Moab Sandstone 162–5, 168, 176, 183–8
Moab Tongue member, Entrada Sandstone 89, 94–5, 96
Moenkopi Formation 89, 98
molecular transport and fluid flow in pelitic rocks 135–44
diffusion under lithostatic stress 139, 139
diffusive transport of methane and nitrogen 138–9, 139
fluid transport
 in faulted pelites 140–3
technical difficulties in experimentation 140–1
 in unfaulted pelites 138–40
methodology 136–7, 136
molecular transport efficiency of methane and nitrogen 138–9
permeability
 reduced by secondary mineralization 141
 related to acoustic anisotropies 142–3, 143, 144, 144
 under controlled effective stress 139–40, 140
 unrelated to faulting 141
permeability-stress relationships 135, 139–40, 140, 142–3, 143, 144
samples of pelites 137–8, 137
see also fluid flow; rock-fluid interactions
Morrison Formation 89, 94, 95, 96, 163, 184–5
Navajo Sandstone Formation 89, 95, 97
neoformed normal faults 52, 60
Nessl reflector, Brent Group 9–13, 11, 15–17, 18–19, 18, 21
Niger Delta, neoformed normal fault propagation 63–6, 64, 65, 66, 67
Ninety Fathom Fault, Whitley Bay x, xi
North Sea Central Graben 218, 219
permeability
 basin fill 220, 221, 222, 222, 223
cataclasites 121–2, 121, 122, 127, 129–30, 277–81, 288
cemented deformation features 158, 168, 287
fault rocks xiv, 121–2, 128, 272–3, 275, 281, 287–8, 291, 293
fault zones 220–1, 222, 222, 223, 226, 226, 270
phyllosilicate barriers in limestone 105, 113, 114
range of 234
reduced by secondary mineralization 141
related to fracture density 304–5
relationship to acoustic anisotropies 142–3, 143, 144, 144
sandstones 162–3
slip planes 158, 159, 163, 167, 180–3, 187
stress 135, 139–40, 140, 142–3, 143, 144
veins 124
zones of 165–83, 169
see also gas permeability
permeability barriers
 in carbonates 105, 113
 in pelites 135
permeability and porosity
diffusivity 234
Moab sandstone 162
modelling fluid diffusion 233–4
unrelated 300
phyllosilicate concentrations in carbonates
 on fault planes 111, 113, 114
 permeability barriers 105, 113, 114
 product of pressure solution 111, 113, 114
 proportional to fault displacement 111
phyllosilicate framework fault rocks (PFFR) 122, 130, 273, 287, 288, 291, 292–5
permeability 288, 291
phyllosilicates in cataclasites 121
clay smears 123, 130
enhance pressure solution 126
inhibit quartz cementation 126
porosity
 fault gouges 149, 234
 permeability 300
sandstone 162–3
porosity reduction 71, 78, 163
cataclasis 126–8
compaction 232, 233, 234
deforation induced mixing 125
effect of phyllosilicate content 125
 with increasing strain 127, 131
pore fluid pressure 233, 234, 235
pressure solution 232, 233
related to deformation 234
pressure solution 287
effects of phyllosilicate content 125, 126, 129–30
 linked with quartz cementation 125–6
phyllosilicate concentration in carbonates 111, 113, 114
porosity reduction 233
suppressed by hydrocarbon migration 126
temperature control 126, 131
pressure solution seams 105–14
association with faults and veins 105–6, 106, 107–11, 107, 110, 303
concentrated near fault tips 106, 111
in fault oversteps (relay ramps) 107, 111, 114
methodology of investigation 106–7
permeability barriers 105, 113
phyllosilicate concentrations on surfaces 106, 107, 111, 114, 303
pitting on fault planes 111, 112, 114
role in fault propagation 107, 108, 114
rotation and shearing 107, 108, 110
propagation processes of normal faults 51–68
experimental procedures 52–4, 53
experimental results 54, 55–9, 60
fault undulations 54, 60–3, 62, 64, 65, 66–8, 66
horizontal propagation 61–3, 68
interpretation 60–1
isolated faults linked by relay faults 61, 66–7
Niger Delta 63–6
radial propagation 51, 60–1, 62, 66, 67
relay faults 54, 60–1, 62
space-time sequences 61–3, 62
tip-parent systems 51, 60–3, 62, 64, 66, 67
vertical propagation 63, 68
quartz cementation
 effects of phyllosilicate content 125, 126
 linked with pressure solution 125–6
 local source of quartz 126
 suppressed by hydrocarbon migration 126
temperature control 126, 131
water-escape structures 124, 124, 128
relay (connecting) faults xvi, 67, 89, 96–7, 97, 98
Arches National Park 158, 159, 162, 178, 180–7, 181, 182
drawdown 160, 176, 178, 180–7, 181, 182
propagation 22, 54, 60–1, 62, 66–7
reservoir compartmentalization 159
relay ramps 30, 67, 107, 111, 114
relay zones (fault relays) xvi, 67, 89, 96–7, 97, 98
Arches National Park 158, 159, 162, 178, 180–7, 181, 182
reservoir compartmentalization
fault relays 159
formation pressure measurements 75
scaling faults 71, 78
Sleipner Vest Field 283, 284, 285
reservoir connectivity 75
reservoir simulation modelling 269, 272, 273–5
rock-fluid interaction and fluid flow 243–59
borehole log fluctuations, power-law scaling 245–9, 246, 247, 248
critical opalescence 254–5
critical state maintenance 256–7
Fourier power-spectra of borehole logs 244–5, 250
geo-fluid management 256
interconnection of physical property fluctuations
256
rock as scaling noise 250–2
correlated and uncorrelated random structures
251–2, 252
rock structure as critical state fluctuation
phenomenon 252–4
defect order and disorder 252–3
long range defect correlation structures 253–4
rock type and the critical state 255
scaling of bore-hole log data 245–9, 246, 247, 248, 256
spatial rock heterogeneity 244
Ror Formation, Heidrun Field 273, 275, 277
Rotliegendes sandstones 128
Salt Wash member, Morrison Formation 89, 94–5, 96
sealing faults on borehole images 71–85
data integration
core observation 73
dynamic measurements 74–5, 83, 84
full-waveform acoustic logs 74
in situ stress field 73–4, 81
fault damage zones 71, 76, 77
fracture aperture measurements 80–1
horizontal wells 72, 75, 76
interpretation procedures 71, 73–5, 73
resolution limits 72–3, 73
secondary electron imagery (SE) 118
segment linkage model 51, 67–8
Selwicks Bay Fault Zone 111
shaley (clay-bearing) fault gouge 74, 75–6, 78, 79, 84, 91–6, 97–101, 129
microstructures 147, 148, 152, 153, 153
shale gouge ratio 98–100, 99, 284
see also clay smears
Siri Fault Zone, Norwegian-Danish Basin 9, 13, 13, 14
Skagerrak Formation, Sleipner Vest Field 287
Sleipner Formation, Sleipner Vest Field 287
Sleipner Vest Field, South Viking Graben 283–96
Slick Rock member, Entrada Sandstone 89, 96, 98, 99, 162–5, 171, 188
slip planes
in fault zones 30, 91, 94–6, 97, 98, 101
nucleated by pressure solution seams 105
permeability 158, 159, 163, 167, 180–3, 187
in sandstones 127, 158
sub-surface open apertures 163
within siliciclastic fault gouges 119–20, 119, 127
slip zones, Moab Fault Zone 89, 91, 95–6, 97, 98, 101
small fault distribution in reservoirs, prediction x–xi, 27–49
attribute map modelling 27–8, 36, 37, 39, 48–9
amplitude anomalies 31
dip azimuth maps 30, 36, 38, 41–2, 42, 45, 48–9
dip change maps 30–3, 31, 36, 38–42, 38, 42, 44, 45–7, 49
dip magnitude maps 30–3, 36, 38–9, 38, 41–2, 42, 45, 48–9
methodology of analysis 48, 48
structural interpretation 35–45, 38, 40, 41–2, 41
automatic tracking 41, 48
dip changes and minor faults related to major faults
28–30, 32
fault damage zones 42
fault density
prediction 47–8, 49
related to dip change 40–1, 41, 45, 45, 47, 49
fault geometries 28–30, 28
horizon map construction 37–8
horizontal wells 42, 48
minor faults identified from surface geometry 30–3
relay zones 28, 30, 45
roll-over folds 28, 32
rotation 33, 33
fault blocks 28
slip planes in fault zones 30
study areas 33–5
Kilve-Lilstock coast, Bristol Channel Basin 28, 35–41, 36, 38, 40, 41, 47, 48–9
Snorre Field, Tampen Spur 28, 33–5, 34, 42, 42, 49
see also fault identification
Snorre Field, Tampen Spur 33–5, 34
sonic logs, full-waveform 74
Southerndown, faults in limestone 106, 111
space–time analysis of propagation 52, 60, 68
stress fields
cataclasites 127, 131
diffusion 139, 139
permeability 127, 135, 139–40, 140, 142–3, 143, 144
reservoir modelling 81, 187, 209–10, 304
sealing capability of faults 73–4
structural features
in fault damage zones x, xi
frequency related to fault offset x
Tampen Spur, North Viking Graben 9, 21, 33–5, 34
Tidwell member, Morrison Formation 89
Tilje Formation, Heidrun Field 270
tip faults 51–2, 60–2, 62
see also faults
tortuosity of fluid flow path xiv, 113, 154, 281
INDEX

veins 94
 associated with pressure solution seams 107–11
 exotic cements 124, 128
 permeability 124
Viking Graben, North 9, 21, 33–5, 34
Viking Graben, South 283–96

water-escape features 128
 exotic cements 124, 124, 128
 Wingate Sandstone Formation 89

X-ray tomography 137
 in analogue modelling 52–61, 53, 66–8