Index

ageing of meteorites, 14C terrestrial ages and infall rate 75–91
age distributions 78, 87–8
Allan Hills Icefields 79–83
Elephant Moraine 83, 86–7
production rate and interpretation 76–78
weathering and stable isotopes 88–9
26Al/53Mn ratio, Mundrabilla iron meteorite 62
Algerian Sahara, Reg el Acfer, meteorite accumulations 46
Allan Hills Icefields
Antarctic H chondrites 48
Far Western Icefield 85–6
meteorite 14C terrestrial ages and infall rate, Main Icefield 79–83, 95–102
meteorite recovery 47–8
meteorite stranding 96
meteorite weathering 49–51, 88–9, 98–102
14C data 88–9
14O and 14C 88–9
Middle Western Icefield 85
Near Western Icefield 85
oxidation-frequency $R(n)$ plot, vs hot desert areas 49–50
$R(t)$ plot, terrestrial age vs ferric iron 45, 48
see also Antarctica
ammonite controversy, Cretaceous–Tertiary (K–T) boundary 235–7
anoxia and transgression 269–71
ANSMET expeditions, Antarctica 100
Antarctica
carbonate weathering products 78
Elephant Moraine Icefield, 14C terrestrial ages 86–7
H chondrites, Thiel Mountains 48
location map 76
meteorite age distributions 87–8
meteorite flux 48, 93–104
determinations from fireballs 93–4
locations 95
meteorite pairing 98–9
recovery conditions 94–102
terrestrial age dating 86–7, 95–7
time changes in Antarctica 99–102
weathering and differential survival 49–51, 88–9, 98
wind-driven rock race 98–9
Archaean impact events 121
asteroids
annual impacts, by size 37
C-type 101
near-earth (NEAs) 11–17, 36–8
major surges 9
Australasian tektites, impactites 142–4
Australia
Nullarbor Region, meteorite flux 59–73
Proterozoic cratering rate, compared with Moon 7
Western Australian Museum (WAMET) 59
automated pairing studies 52–6, 98–9
genetic algorithm (GA) 54–6
new approach 43–56
Nullarbor Region 59, 63–7
Barringer crater 111
bolides, mass extinctions 219–22, 265–7, 270
intensity 221
see also asteroids; comets; impact events
Bosumtwi crater, Ghana, impactites 144–5
Brent impact structure 111
Bushveld Complex, Vredefort Dome impact structure 146–8, 195–6
carbon geochemistry
allotropes 205–14
diamonds 207–14
fullerenes 206–7
14C terrestrial ages, Antarctica 75–91
saturated activities 14C, 20–50cm meteorites 78
terrestrial impact craters 205–16
cenotes 158–9, 161–2
Chicxulub impact structure, Mexico 4, 155–93
anhydrite as source of sulphur dioxide 122
comet as impactor 166
Cretaceous–Tertiary (K–T) boundary 122, 148, 177, 205
flooded sinkholes (cenotes) 158–9, 161–2, 178
map 178
mapping with gravity and seismic data 155–75
 crater structure mapping 156–62
horizontal gravity anomaly gradient 156–9
impact and environmental effects 167–70
transient cavity size, impact energy 162–7
passive seismic array 177–93
data acquisition and event location 178–80
Rayleigh-wave dispersion study 180–7
teleseismic receiver function analysis 187–91
chondrites
H group 63
Mössbauer measurements 45, 48
oxidation and terrestrial age 45–6, 48–51
climate change, mass extinctions 268
cometary cratering rate, impact structures 15
comets
dark 11–17
evolution 13
flux modulation by Galaxy 20–1
Hale–Bopp 19
impacts on Earth
Chicxulub impact structure, Mexico 166
cumulative frequency by size 37
major agents of crater formation 2
observed, long and short periods 11–12
short-period
Halley-type objects 11–17
Jupiter family 9, 11–17
small bodies 11
comminution 197–8
Cook 007 H4 group chondrite 63
crater-producing bodies see asteroids; comets; impactors
Cretaceous–Tertiary (K–T) boundary 19, 105–6, 177, 205
ammonite controversy 235–7
Chicxulub impact structure 122, 177, 205
iridium anomaly 19
INDEX

Cretaceous–Tertiary (K–T) boundary (continued)
major impact evidence 121–2
planktonic foraminiferal controversy 231–5
soot, wildfires 122, 206–7
vertebrate extinction
dinosaurs 253–5
gradualistic and impact models 252–3
vertebrate record 247–52

Darwin crater and impact glass, impactites 141–2
decay constant 45–7
deserts see Acfer; Nullarbor Region, Australia;
Roosevelt County
diamonds
Popigai crater, North Siberia 207–10
Ries crater, South Germany 210–14
other craters 214
digital imaging of meteorite photomicrographs for
automated pairing 52–6
dinosaurs see vertebrate extinction
Earth, bombardment periodicity 21
Earth evolution 119–25
earliest (unknown) 119–21
frequency of K–T-sized events 123
later (known) 121–5
Moon formation hypothesis 120–1
Edgeworth–Kuiper belt 11–17
El Kef blind test, foraminifera 232–5
ergy release
uclear test craters 35
vs crater diameter 35
European Meteorite research (EUROMET) 59
extinctions see mass extinctions
Fermor Lecture Meeting 1
fireballs, meteorite flux, Antarctica 93–4
flood basalt eruptions, bolide events and sea-level
changes, intensity of mass extinctions 22, 219–20
flux estimation 3
Antarctica 47–56, 93–104
Allan Hills 43–56
determinations from fireballs 93–4
calculations from decay rates 43–58
comets 20–1
evidence and consequences 105–31
hot desert
Nullarbor Region, Australia 59–73
Roosevelt County 46, 61, 101–2
Sahara 44–7, 61
Flynn Creek crater 36
foraminifera
Cretaceous–Tertiary (K–T) boundary 230–5
El Kef blind test 232–5
Lazarus taxa 230
friction-induced melting, hypervelocity impact
structures 198–200
Frood–Stobie ore body 196

Galactic periodicity 19–29
hypothesis 22–3
Galactic tide, Oort cloud 20
genetic algorithm (GA), automated pairing of
meteorites 54–6
Germany, Ries crater 118, 210–14, 266
Ghana, Bosumtwi crater impactites 144–5
Gosses Bluff impact structure 112
Goulds belt complex 21
Halley-type comets 11–17
Halley-type orbits, frequency 11–17
Hawke Bay Event 269
Holmes cycle, Galactic periodicity 19–20, 28
hypervelocity impact see impact structures
impact craters see impact structures
impact structures 105–10
analysis, craters (age vs diameter) 25
carbon geochemistry 205–16
carbon allotropes 214
fullerene molecule C_{60} 206–7
Popigai, North Siberia, Russia, impact crater
diamonds 207–10
Ries, South Germany, diamonds and silicon
carbide 210–14
comparison with nuclear explosion 31, 34–6
correlated with mass extinctions 27
crater scaling law 13–17
craterforms 110–15
cross-section schema
complex 112
large 201–2
simple 111
tranient and disruption diameters 163
whole crustal model 164
Darwin crater and impactites 141–2
ergy–diameter equation 34–6
erosion 32–3
events, time-scales 124–5
hypervelocity impact 195–204
comminution 197–8
compared to nuclear explosions 34–5
localized shock and friction-induced melting
198–204
pseudotachylytes 195–203
shock veins 200–3
impact record 7, 106–10
large, increase in rate of production 7
list, basic characteristics 108
mass distribution equation 36–9
North American Craton 32–3
periodicities 20
rate
cometary cratering rate 15
cratering rate equation 31–4
estimated, Earth and Moon 7–8
late heavy bombardment 8
long-term variations 7–9
production of large craters 7
production rate 33–4
size-frequency distribution 109
related events 105–31
Cretaceous–Tertiary boundary 105–6
Earth evolution 119–25
earliest (unknown) Earth 119–21
later (known) Earth 121–5
marine invertebrate extinctions 217–46
Moon formation hypothesis 120–1
shock metamorphism 115–17
size-frequency distribution 109
INDEX

stratigraphic record 118–19
terminology 106
terrestrial
 inferred impactor types 138–9
location map 107
 number known 133
impacts 133–53
 Australasian tektites 142–4
 Bosumtwi crater 144–5
 Darwin crater and impact glass 141
 Ivory Coast tektites 144–5
meteoritic components 133–53
 identification problems 137–40
 platinum group elements (PGEs) 135–6
Re-Os analyses 140–1
 siderophile element analyses 134–6
Mexico, Chicxulub 148
 South Africa
 SALTpan crater 145–6
 Vredefort 146–8
impactors 1, 9
 cometary capture 11
 kinetic energy E 39, index, asteroids and comets 40
 mass distribution 31–42
 crater diameter vs energy release 35
 cratering rate equation 31–4
 energy-diameter equation 34–6
 mass distribution equation 36–9
see also flux estimation
 impacts on Earth see impact structures
invertebrate extinctions see marine invertebrate extinctions
iridium, abundances, range 135
iridium anomaly, K–T boundary 19, 265
iron meteorites, regional deficiencies, causes 67–70
Ivory Coast tektites, impactites 118, 144–5
Jupiter family comets 11–17
K–Ar and Ar–Ar dating 110
K–T see Cretaceous–Tertiary boundary
Lampson cube-root law 34
Lazarus taxa
 foraminifera 230
 Signor–Lipps effect 230–1
Lewis Cliff, Antarctic H chondrites 48
lithology of hypervelocity impact 195–203
mammals, K–T boundary 250, 252–3
Manicouagan crater, Quebec 112, 117, 266
Maokouan (Guadalupian) crisis 269
marine invertebrate extinctions
 biostratigraphic data 229–31
 hiatuses of time 229–30
 Signor–Lipps effect 230–31
 Zombie effect 231
causes and effects of proposed events 225–6
 correlation with causal events 218–24
 bolide impacts 220–2
 cusatic sea-level change 222–4
 flood basalt eruptions 222
 identification by selectivity criteria 224–9
 kill curve, mass extinctions 266
 Phanerozoic events 218–22
taxa, victims and survivors 228
taxonomic victims and survivors 228
marine regression, mass extinctions 268–70
mass distribution
 crater-producing bodies 31–42
 shower falls 65–7
 equation, asteroids and comet impacts 36–40
 Roosevelt County, New Mexico 101–2
mass extinction events 217–46, 259–74
 anoxia and transgression 269–71
 ‘big five’, extinction rates 260
 biostratigraphic data 229–31
 bolide impact 265–7
 causal factors 265
 causal mechanisms 225–6
 correlation with causal events 218–24
 summary 270
climate change 268
 correlated with impact structures 27
 episodes 259
 gradualistic and impact models 252–3
 identification by selectivity criteria 224–9
 intensities 261–2
 vs bolide events, flood basalt eruption events and sea-level changes 219–20
 kill curve, marine species 266
 marine regression 268–9
 periodicity 261–5
Permian 5
possible causal factors 265
taxa, victims and survivors 228
volcanism 267
vs sea level (Hallam) 269
see also Cretaceous–Tertiary (K–T) boundary;
 marine invertebrate extinctions; vertebrate extinctions
Melosh relationship 35
meteorite flux see flux estimation
Meteorite Observation and Recovery Project (MORP)
camera network 44, 60
 flux estimation 43–4
meteorites, type frequency 67–70
Mexico, Yucatán see Chicxulub impact structure
molecular clouds, giant, penetration by Sun 21
Montagnais structure, Nova Scotia shelf 266
Moon
 cratering rate 4, 7–8
 compared with Australian Proterozoic cratering rate 7
estimated cratering rate 7–8
formation hypothesis 120–1
Tycho crater 7
Morokweng crater, Zimbabwe 205
Mössbauer measurements, chondrites 45, 48
Mundrabilla iron meteorite, 26Al/53Mn ratio 62
Near Earth Asteroids (NEA) 11–17, 36–8
North American Craton, large craters, ages 32–3
nuclear explosion craters
 compared to hypervelocity impacts 34–5
 energy release 31, 34–5
Nullarbor Region, Australia 3, 59–76
automated pairing studies 52–6
density of falls 63
Nullarbor Region, Australia (continued)
 mass distribution 63–8
 mass frequency 63–7
 meteorite accumulations 46
 meteorite flux 59–73
 with time 70–1
 meteorite type frequency 67–70
 recovery and nomenclature 62
 shower falls 64–7
 terrestrial ages and weathering half-life 62–3

Oort cloud 3, 11–17
 disturbances 19
 Galactic tide 20

oxidation–frequency distribution $R(n)$
 hot desert H chondrites vs Allan Hills finds 49–50
 result of ice flow 51
 result of weathering 50
 result of wind action 51
 speculative model 51–2

oxidation–time distribution $R(t)$, terrestrial age vs ferric iron, variation 45, 48

pairing see automated pairing studies
Perinian mass extinction 5

Phanerozoic
 impact craters, North American Craton 32–3
 see also mass extinction events

planktonic foraminiferal controversy 230–5
platinum group elements (PGEs), impactites 135–6
Popigai impact crater 117, 266
 diamonds 207–10
 power spectrum, Rampino–Caldeira geological events 22–4

pseudotachylites
 hypervelocity impact 195–203
 shock veins 200–3

quartz, shocked 245

Quebec, Manicouagan crater 266
Queen Maud Land, Antarctica, meteorite recovery 47–8

radionuclide decay
 age estimates 84
 aluminium-26, krypton-81, chlorine-36 75–6
 see also carbon

Rampino–Caldeira geological events, power spectrum 22–8

Raup–Sepkoski extinction peaks 23–8
 recovery and nomenclature, Nullarbor Region, Australia 62
Reg el Acfer, Algerian Sahara, meteorite accumulations 46
Re–Os analyses, impactites 140–1
Re–Os isotopes 133–53
Ries, South Germany impact crater 118, 266
 diamonds and silicon carbide 118, 210–14
Roosevelt County, New Mexico
 mass distribution of meteorites 101–2
 meteorite accumulations 46, 61

Sahara
 flux estimation 44–7, 61

Saharan meteorite studies 44–7

Saltpan crater, South Africa 145–8
 scaling law, craters 13–17
 Schwarzschild velocity distribution 20
 sea, anoxia and transgression 269–71
 sea level change 219, 22–4
 marine regression 268–9
 vs mass extinctions 268–9
 shock metamorphism 114–17
 shock veins, hypervelocity impact 200–3
 shocked quartz 245–6
 siderophile element analyses, impactites 134–6, 134–6
 Signor–Lipps effect, Lazarus taxa 230–1
 silicon carbide, Ries crater, South Germany 210–14
 Solar System, molecular cloud penetration frequency 21
 Solomon Isles earthquake, broadband record 179
 South Africa, Saltpan crater, impactites 145–6, 195–6
 stratigraphic record, impact structures 118–19
 Sudbury
 fullerenes 207
 North American Craton, impact structure 197–8
 Sun, penetration of giant molecular clouds 21

tektites, Australasian impactites 142–4
 temperature change, proposed cause of K–T event 270
 terrestrial ages
 chondritic meteorites, Nullarbor 62–3
 dating, see also Antarctica
 terrestrial data, periodicity 21–4
 terrestrial impact craters see impact craters

Thiol Mountains, Antarctic H chondrites 48
Tisserand parameter 11–17
Tunguska event, time-scale 124–5

ureilites, Elephant Moraine Icefield 86

vertebrate extinction 247–57
 amphibians 248
 archosaurs 249–50
 Cretaceous–Tertiary (K–T) boundary, survival/ extinction 248
 dinosaurs 253, 254–5
 fishes 247–8
 mammals 250, 252–3
 marine realm 253
 marsupials 253
 North-West America 252–3
 outside North-West America 253–4
 reptiles 248–9
 Victoria Land see Antarctica, Allan Hills Icefields
 volcanism, mass extinctions 267, 270
 Vredefort Dome, South Africa, impact structure 146–8, 195–6

weathering and differential survival 98
weathering half-life, chondritic meteorites, Nullarbor 62–3
weathering studies, meteorites 49–51

Yamato Mountains, Queen Maud Land, Antarctic H chondrites 47–8
Zhamanshin event 124
Zombie effect 231