Gas Hydrates
It is recommended that reference to all or part of this book should be made in one of the following ways:


Gas Hydrates
Relevance to World Margin Stability and Climate Change

EDITED BY

J.-P. HENRIET
Renard Centre of Marine Geology
University of Gent
Belgium

J. MIENERT
GEOMAR
Kiel
Germany

1998
Published by
The Geological Society
London
THE GEOLOGICAL SOCIETY

The Society was founded in 1807 as The Geological Society of London and is the oldest geological society in the world. It received its Royal Charter in 1825 for the purpose of 'investigating the mineral structure of the Earth'. The Society is Britain's national society for geology with a membership of around 8500. It has countrywide coverage and approximately 1500 members reside overseas. The Society is responsible for all aspects of the geological sciences including professional matters. The Society has its own publishing house, which produces the Society's international journals, books and maps, and which acts as the European distributor for publications of the American Association of Petroleum Geologists, SEPM and the Geological Society of America.

Fellowship is open to those holding a recognized honours degree in geology or cognate subject and who have at least two years' relevant postgraduate experience, or who have not less than six years' relevant experience in geology or a cognate subject. A Fellow who has not less than five years' relevant postgraduate experience in the practice of geology may apply for validation, subject to approval, may be able to use the designatory letters C Geol (Chartered Geologist).

Further information about the Society is available from the Membership Manager, The Geological Society, Burlington House, Piccadilly, London W1V 0JU, UK. The Society is a Registered Charity, No. 210161.
Contents

Introduction and overviews

J.-P. HENRIET & J. MIENERT: Gas hydrates: the Gent debates. Outlook on research horizons and strategies 1
KYENVOLDEN, K. A.: A primer on the geological occurrence of gas hydrate 9
SLOAN, E. D. JR.: Physical/chemical properties of gas hydrates and application to world margin stability and climatic change 31

Analysis and modelling of hydrate formation

GINSBURG, G. D.: Gas hydrate accumulation in deep-water marine sediments 51
REMPLE, A. W. & BUFFETT, B. A.: Mathematical models of gas hydrate accumulation 63
BAKKER, J.: Improvements in clathrate modelling II: the H2O-CO2-CH4-N2-C2H6 fluid system 75

Exploration strategy and reservoir evaluation methodology

GOLDBERG, D. & SAITO, S.: Detection of gas hydrates using downhole logs 129
TINIVELLA, U., LODOLO, E., CAMERLENGHI, A. & BOEHM, G.: Seismic tomography study of a bottom simulating reflector off the South Shetland Islands (Antarctica) 141

Worldwide gas hydrate occurrences and regional case studies

THIERRY, R., BAKKER, R., MONNIN, C. & THE SHIPBOARD SCIENTIFIC PARTY OF ODP LEG 164: Geochemistry of gas hydrates and associated fluids in the sediments of a passive continental margin. Preliminary results of the ODP Leg 164 on the Blake Outer Ridge 161
LONG, D., LAMMERS, S. & LINKE, P.: Possible hydrate mounds within large sea-floor craters in the Barents Sea 223
VEERAYYA, M., KARISIDDAIHAH, S. M., VORA, K. H., WAGLE, B. G. & ALMEIDA, F.: Detection of gas-charged sediments and gas hydrate horizons along the western continental margin of India 239
NEBEN, S., HINZ, K. & BEIERSDORF, H.: Reflection characteristics, depth and geographical distribution of bottom simulating reflectors within the accretionary wedge of Sulawesi

DELISLE, G., BEIERSDORF, H., NEBEN, S. & STEINMANN, D.: The geothermal field of the North Sulawesi accretionary wedge and a model on BSR migration in unstable depositional environments

Relevance to margin stability and climatic change

MIENERT, J., POSEWANG, J. & BAUMANN, M.: Gas hydrates along the northeastern Atlantic margin: possible hydrate-bound margin instabilities and possible release of methane


HAQ, B. U.: Natural gas hydrates: searching for the long-term climatic and slope-stability records

THORPE, R. B., PYLE, J. A. & NISBET, E.G.: What does the ice-core record imply concerning the maximum climatic impact of possible gas hydrate release at Termination 1A?

RAYNAUD, D., CHAPPELLAZ, J. & BLÖNIER, T.: Ice-core record of atmospheric methane changes: relevance to climatic changes and possible gas hydrate sources

Index