Core–Log Integration
THE GEOLOGICAL SOCIETY

The Society was founded in 1807 as The Geological Society of London and is the oldest geological society in the world. It received its Royal Charter in 1825 for the purpose of 'investigating the mineral structure of the Earth'. The Society is Britain's national society for geology with a membership of around 8500. It has countrywide coverage and approximately 1500 members reside overseas. The Society is responsible for all aspects of the geological sciences including professional matters. The Society has its own publishing house, which produces the Society's international journals, books and maps, and which acts as the European distributor for publications of the American Association of Petroleum Geologists, SEPM and the Geological Society of America.

Fellowship is open to those holding a recognized honours degree in geology or cognate subject and who have at least two years' relevant postgraduate experience, or who have not less than six years' relevant experience in geology or a cognate subject. A Fellow who has not less than five years' relevant postgraduate experience in the practice of geology may apply for validation and, subject to approval, may be able to use the designatory letters C Geol (Chartered Geologist).

Further information about the Society is available from the Membership Manager, The Geological Society, Burlington House, Piccadilly, London W1V 0JU, UK. The Society is a Registered Charity, No. 210161.
Contents

Preface vii

Measurement, scaling and calibration

BRISTOW, C. S. & WILLIAMSON, B. J. Spectral gamma ray logs: core to log calibration, facies analysis and correlation problems in the Southern North Sea 1

CORBETT, P. W. M., JENSEN, J. L. & SORBIE, K. S. A review of up-scaling and cross-scaling issues in core and log data interpretation and prediction 9

DUNCAN, A. R., DEAN, G. & COLLIE, D. A. L. Quantitative density measurements from X-ray radiometry 17

LOVELL, M. A., HARVEY, P. K., JACKSON, P. D., BREWER, T. S. WILLIAMSON, G. & WILLIAMS, C. G. Interpretation of core and log data—inTEGRation or calibration? 39

RAMSEY, M. H., WATKINS, P. J. & SAMS, M. S. Estimation of measurement uncertainty for *in situ* borehole determinations using a geochemical logging tool 53

Physical and chemical properties

AHMADI, Z. M. & COE, A. L. Methods for simulating natural gamma ray and density wireline logs from measurements on outcrop exposures and samples: examples from the Upper Jurassic, England 65

HERRON, M. M. & HERRON, S. L. Quantitative lithology: open and cased hole application derived from integrated core chemistry and mineralogy database 81

KINGDON, A., ROGERS, S. F., EVANS, C. J. & BRERETON, N. R. The comparison of core and geophysical log measurements obtained in the Nirex investigation of the Sellafiel region 97

LAUER-LEREDDE, C., PEZARD, P. A., TOURON, F. & DEKEYSER, I. Forward modelling of the physical properties of oceanic sediments: constraints from core and logs, with palaeoclimatic implications 115

Petrophysical relationships

BASTOS, A. C., DILLON, L. D., VASQUEZ, G. F. & SOARES, J. A. Core-derived acoustic, porosity & permeability correlations for computation pseudo-logs 141

DENICOL, P. S. & JING, X. D. Effects of water salinity, saturation and clay content on the complex resistivity of sandstone samples 147

SAMWORTH, J. R. Complementary functions reveal data hidden in your logs 159

SHAKEEL, A. & KING, M. S. Acoustic wave anisotropy in sandstones with systems of aligned cracks 173
Widarsono, B., Marsden, J. R. & King, M. S. *In situ* stress prediction using differential strain analysis and ultrasonic shear-wave splitting 185

Worden, R. H. Dolomite cement distribution in a sandstone from core and wireline data: the Triassic fluvial Chaunoy Formation, Paris Basin 197

Wortington, P. F. Conjunctive interpretation of core and log data through association of the effective and total porosity models 213

Xu, S. & White, R. Permeability prediction in anisotropic shaly formations 225

Integration of core and borehole images

Goodall, T. M., Möller, N. K. & Ronningsland, T. M. The integration of electrical image logs with core data for improved sedimentological interpretation 237

Haller, D. & Porturas, F. How to characterize fractures in reservoirs using borehole and core images: case studies 249

Jackson, P. D., Harvey, P. K., Lovell, M. A., Gunn, D. A., Williams, C. G. & Flint, R. C. Measurement scale and formation heterogeneity: effects on the integration of resistivity data 261

Lofts, J. C. & Bristow, J. F. Aspects of core-log integration: an approach using high resolution images 273

Major, C. O., Pimez, C., Goldberg, D. & Leg 166 Scientific Party High-resolution core-log integration techniques: examples from the Ocean Drilling Program 285

Applications and case studies

Barclay, S. A. & Worden, R. H. Quartz cement volumes across oil-water contacts in oil fields from petrography and wireline logs: preliminary results from the Magnus Field, Northern North Sea 327

Bucker, C. J., Delius, H., Wohlenberg, J. & Leg 163 Shipboard Scientific Party. Physical signature of basaltic volcanics drilled on the northeast Atlantic volcanic rifted margins 363

Gonçalves, C. A. & Ewert, L. Development of the Cote d'Ivoire-Ghana transform margin: evidence from the integration of core and wireline log data 375

Index 413
Preface

Core and log measurements provide crucial information about subsurface formations. Their usage, either for integration or calibration, is complicated by the different measurement methods employed, different volumes of formation analysed, and in turn, the heterogeneity of the formations. While the problems of comparing core and log data are only too well known, the way in which these data can be most efficiently combined is not at all clear in most cases. In recent years there has been increased interest in this problem both in industry and academia, due in part to developments in technology which offer access to new types of information, and in the case of industry, pressure for improved reservoir models and hydrocarbon recovery. The application of new numerical methods for analysing and modelling core and log data, the availability of core scanning facilities, and novel core measurements in both two and three dimensions, currently provide a framework for the development of new and exciting approaches to core-log integration.

This Special Publication addresses some of the problems of core–log integration encountered by scientists and engineers from both industry and academia. The diverse nature of the contributions in this volume are an expression of the value and need to understand core and log measurements, and the way in which they can be combined to maximum effect. Contributions range geologically from hydrocarbon-bearing sediments in the North Sea to the volcanic rocks that form the upper part of the oceanic crust. In order to constrain this diversity for presentation the volume has been divided into five sections and starts with ‘Measurement, scaling and calibration’, 6 papers concerned purely with aspects of core and, or log measurements themselves including cross-correlation, upscaling, measurement uncertainty and accuracy. Subsequent sections include (2) ‘Physical and chemical properties’ – 5 papers, (3) ‘Petrophysical relationships’ – 8 papers, (4) ‘Integration of core and borehole images’ – 5 papers and (5) ‘Applications and case studies’ – 7 papers. All papers were submitted in response to an open call for contributions so, within the constraints of work loads and other factors, may be considered to represent a fair snapshot of recent developments in Core–Log Integration.

The volume arises from a meeting of the Borehole Research Group of the Geological Society and the London Petrophysical Society (London Chapter of the Society of Professional Well Log Analysts) held in London in September 1996. The editors are particularly grateful to Gail Williamson both for the organization of the meeting and for persistence in coaxing authors, reviewers, and editors; also to Jo Cooke at the Geological Society Publishing House for her continuous support in the production of this volume. We also wish to thank all those who undertook the often arduous job of reviewing the manuscripts, and without whose help this volume would have been that much poorer.

Peter K. Harvey & Michael A. Lovell
Leicester University