Structural Geology in
Reservoir Characterization
Structural Geology in Reservoir Characterization

EDITED BY

M. P. COWARD, T. S. DALTABAN & H. JOHNSON

Royal School of Mines
Imperial College
London
UK

1998

Published by
The Geological Society
London
THE GEOLOGICAL SOCIETY

The Society was founded in 1807 as The Geological Society of London and is the oldest geological society in the world. It received its Royal Charter in 1825 for the purpose of 'investigating the mineral structure of the Earth'. The Society is Britain's national society for geology with a membership of around 8000. It has countrywide coverage and approximately 1000 members reside overseas. The Society is responsible for all aspects of the geological sciences including professional matters. The Society has its own publishing house, which produces the Society's international journals, books and maps, and which acts as the European distributor for publications of the American Association of Petroleum Geologists, SEPM and the Geological Society of America.

Fellowship is open to those holding a recognized honours degree in geology or cognate subject and who have at least two years' relevant postgraduate experience, or who have not less than six years' relevant experience in geology or a cognate subject. A Fellow who has not less than five years' relevant postgraduate experience in the practice of geology may apply for validation and, subject to approval, may be able to use the designatory letters C Geol (Chartered Geologist).

Further information about the Society is available from the Membership Manager, The Geological Society, Burlington House, Piccadilly, London W1V 0JU, UK. The Society is a Registered Charity, No. 210161.
Contents

Preface vii

COSGROVE, J. W. The role of structural geology in reservoir characterization 1

ARCHER, J. S. Reservoir characterization and modelling: a framework for field development 15

FREEMAN, B., YIELDING, G., NEEDHAM, D. T. & BADLEY, M. E. Fault seal prediction: the gouge ratio method 19

CRAWFORD, B. R. Experimental fault sealing: shear band permeability dependency on cataclastic fault gouge characteristics 27

GABRIELSEN, R. H., AARLAND, R.-K. & ALSAKER, E. Identification and spatial distribution of fractures in porous, siliciclastic sediments 49

MANZOCCHI, T., RINGROSE, P. S. & UNDERHILL, J. R. Flow through fault systems in high-porosity sandstones 65

GIBSON, R. G. Physical character and fluid-flow properties of sandstone-derived fault zones 83

WALSH, J.-J., WATTERTON, J., HEATH, A., GILLESPIE, P. A. & CHILDS, C. Assessment of the effects of sub-seismic faults on bulk permeabilities of reservoir sequences 99

OWEN, R. J., LI, X.-Y., MACBETH, C. D. & BOOTH, D. C. Reservoir characterization: how can anisotropy help? 115


STEWART, S. A. & PODOLSKI, R. Curvature analysis of gridded geological surfaces 133

COUPLES, G. D., LEWIS, H. & TANNER, P. W. G. Strain partitioning during flexural-slip folding 149

YOUINES, A. I. & ENGELDER, T. Fracture distribution in faulted basement blocks: Gulf of Suez, Egypt 167

LONERGAN, L., CARTWRIGHT, J., LAVER, R. & STAFFURTH, J. Polygonal faulting in the Tertiary of the Central North Sea: implications for reservoir geology 191

AARLAND, R. K. & SKJERVEN, J. Fault and fracture characteristics of a major fault zone in the northern North Sea: analysis of 3D seismic and oriented cores in the Brage Field (Block 31/4) 209

FOSSEN, H. & HESTHAMMER, J. Structural geology of the Gullfaks Field, northern North Sea 231

Index 263
Preface

This volume is for geologists, geophysicists and reservoir simulation/petroleum engineers studying faulted and fractured reservoirs, particularly those interested in studying petroleum traps, predicting fluid flow or modelling structurally heterogeneous reservoirs.

The two main aims of the volume are to capture the wide range of rapidly expanding research in this area, which reflects the increasing importance of comprehensive ‘structural characterization’ in static reservoir descriptions, and to help promote synergy between the geosciences and petroleum engineering disciplines. The first aim is addressed by the sixteen papers of the volume, the majority of which cover a range of structural geological features, particularly faulted and fractured reservoirs, fault gouge properties, fault seal potential and fluid flow/simulation modelling in faulted and fractured reservoirs. The papers draw heavily on experience obtained in the North Sea.

The first two papers set the theme of the subject area. The remainder of the book is divided into two parts: faults and fractures (ten papers), and case studies (four papers).

In the introduction, Cosgrove reviews the role of structural geology in reservoir characterization and contrasts traditional aspects of structural geology, which focused on the three-dimensional geometry and spatial distribution of structures, with recent trends, which consider the dynamics of structure formation and the interplay of stress and fluid migration.

This is complimented by Archer, who provides a broad, petroleum engineering view of reservoir characterization, covering both static description and dynamic modelling aspects, and reviews some of current industry challenges in field development and reservoir management.

The majority of the volume is devoted to various aspects of faults and fractures. Freeman et al. present a methodology for predicting fault seal potential, the Gouge Ratio method, which integrates seismically based geometrical data with well-based lithological and compositional information. Application of this method in the Oseberg South field is demonstrated. Experimental aspects of fault plane characteristics are considered by Crawford, who quantifies the magnitude of permeability reduction in a series of experiments on artificially-induced shear bands.

Gabrielsen et al. emphasize the importance of evaluating the complete fracture system in subsurface structural reservoir characterization, including the full deformation history, lithology (grain size, composition, bed thickness, etc.), rheological properties and the relationship of the well under investigation to nearby larger structures. The impact of fault geometries on compartmentalization, effective permeability and fluid flow in high porosity sandstones has been assessed by Manzocchi et al. in a series of numerical flow simulations. Gibson also considers faulted sandstone reservoirs and emphasizes the importance of understanding the nature (e.g. lithology, composition, clay content, etc.) and fluid flow properties (e.g. permeability and capillary displacement pressures) of the sandstone-derived fault zones, of which two main types are highlighted: deformation bands, derived from quartz-rich sandstones, and clay matrix gouge zones, derived from mineralogically immature sandstones. Walsh et al. present a range of fault and fault array models, to investigate the impact of variations in fault density, spatial distribution, orientation distribution and fault zone permeability (relative to the bulk permeability of the host rock) on the overall single phase horizontal bulk permeability of a typical North Sea Brent Group reservoir. Results demonstrate that fault densities are much more significant than spatial
and orientational variations, but prediction of fault zone hydraulic properties is a crucial uncertainty in all these, and similar, modelling studies. One approach to improving the description of fault-related heterogeneities in reservoirs is to use seismic anisotropy, as pointed-out by Owen et al., who demonstrate its value in predicting fault aggregate alignments and cluster distribution. Foley et al. consider numerical fluid flow modelling techniques in faulted reservoirs, noting limitations in many modelling programs, and conclude that the Boundary-Fitted Co-ordinate Technique allows for more realistic fault geometries to be modelled. Reiterating previous conclusions, they emphasize the importance of information on fault zone characteristics to enable confident predictions of permeability distribution in faulted reservoirs. The curvature analysis of gridded surfaces, particularly those generated from 3D seismic data, offers a means of predicting fracture distribution according to Stewart & Podolski. They argue that the sum of the absolute values of principal curvature reflects the spatial variance in strain, and hence to fracture density, and that these data could form an inexpensively-derived surface attribute of horizons mapped on 3D seismic data. Couples et al. emphasize the importance of strain partitioning during flexural (bedding plane) slip folding. They note that most petroleum reservoirs are created by fracture networks related to flexural deformation and that fracture characteristics reflect structural position within the fold.

The final part of the volume is devoted to four case studies, where some of the previously discussed concepts are applied to a range of different structural settings. Younes et al. evaluate fracture development and its preservation in complexly faulted basement blocks in the Gulf of Suez, Egypt. Outcrop and sub-surface examples are discussed, the latter using high-resolution FMS and FMI image logs for fracture detection, and variations in fracture development noted as follows: (1) enhanced fracture density resulted from sheeting, faulting and dyke emplacement, and (2) reduced fracture density occurs as depth of erosion of basement blocks increases. Lonergan et al. note the presence of pervasive polygonal extensional fault networks in Tertiary mud-dominated slope and basin floor depositional systems in the North Sea. Based on the detailed analysis of 3D seismic data they conclude that these types of faults formed during sedimentation and early burial and may be important conduits for fluid migration, both compaction/dewatering and secondary petroleum migration.

Both 3D seismic data and a continuous, 120 m long oriented core have been used by Aarland & Skjerven to characterize a major normal fault in the Brage field (Northern North Sea), which highlights the heterogeneous nature of the fault zone and variations in fracture density. This may have implications for other rift-related fault blocks in the North Sea and elsewhere.

Finally, Fossen & Hesthammer present an integrated structural geological analysis of one of the Northern North Sea’s most complexly deformed rotated fault blocks, which contains the giant Gullfaks oil field. Most of the shear deformation is thought to have occurred by strain-dependent grain reorganization in the poorly consolidated Jurassic sediments, which resulted in reduced porosity. Forward modelling studies and detailed evaluation of the field’s various structurally defined subareas are fully described.

This volume arose from the meeting of the Petroleum Group of the Geological Society on ‘Structural Geology in Reservoir Characterization’ which was held in March 1995 at Imperial College, London. We thank all the contributors to the meeting for stimulating this volume, and the authors and referees who brought it to fruition.

Michael Coward, Sezgin Daltaban and Howard Johnson
July 1997