Index

Page numbers in *italics* refer to Figures and Tables

Aci San Antonio 182
Aciatena 182–3
Aciplatan 183–4
Aeolian Islands
Alicudi 12
see also Stromboli
Alaska 1, 3, 11, 12, 17
Alba Patera 319–20, 334, 335, 336, 339
Albor Tholus 323, 324–5, 334, 335, 336, 339
Alicudi 12
Alpha Regio 352, 358
Amphitrites Patera 327–9, 334, 337
analogue modelling
landslides 302–4
Andean volcanoes 1
Antarctica see Deception Island
Apollinaris Patera 325–6, 334, 335, 336, 337, 338
Arsia Mons 36, 37, 316–18, 334, 335, 336, 337, 338, 339
Arsia-type caldera 335–6
Ascraeus Mons 37, 38, 319, 334, 335, 336, 337, 338, 339, 341
aseismic creep 179–80
Etna study
measurement sites 181–6
significance of results 186–90
Atla Regio 353, 356, 357, 364, 369
Augustine Island (Alaska) 1, 3, 11, 12, 17
Avalanche del Zarzo 366, 368
Ayacata Formation 86, 87
Bandai-type collapse 77–8
basalt
influence on stability 48–9
shield volcano landslides 295
Basaltic Shield Formation (BSF) 255
basement
deformation behaviour
numerical modelling 105–9
quantification 102–3
Mount Etna 200–3
Basilicata mass flow studies 237–9
emplacement 241–5
lithology 239–40
summary 245–6
Bezymianny-type collapse 77, 78, 340
Biblis Patera 323, 334, 336, 339
Blackhawk landslide 366, 368
Bracciano Depression
setting 225–6
structure 230–3
volcanic sequence 227–30
Bransfield Strait see Deception Island
Brito Formation 97
calderas
Deception Island
origin 263
setting 253–14
dating 250–4
martian
classification 333–6
deformation 336–7
flank structures 337–9
gravitational collapse 340–3
regional studies
Elysium 323–7
Hellas 327–30
Syrtis Major 330–2
Tharsis 313–23
rift zones 339–40
sizes 332–3
morphology classification 308
problems of interpretation 308–10
related slides 276–7
California 83
Campi Flegri 83, 263
Canarian Archipelago (Canary Islands) 1, 5, 8, 12
mass wasting 128
rift features 125–8
geometry 129
stresses in 128–9
setting 125
slides 281
volcanic activity 125
volcanic hazard assessment 131–4
see also El Hierro; Fuerteventura; Gran Canaria;
La Gomera; La Palma; Lanzarote; Tenerife
Caribbean
tsunami hazard 115
quantification 120–2
Cascades Range see Mount Adams; Mount Rainier;
Mount St Helens
Casita 99
Cavoni 55, 60
Ceraunius Tholus 321–2, 334, 335, 336, 339, 343
Chilean volcanoes
Hudson 245
Socompa 7, 8, 77, 78
clastic dykes, effect on pore pressure of 83–5
cohesive strength (s), relation to collapse 79
Colima (Mexico), Nevada di 3–4, 7–8, 16
collapse
classification 77–8
physical parameters influencing 78–80
collapse calderas 2
Colli Albani Volcanic District 225
Colombia 17
Concepción (Nicaragua) 10, 86, 96, 98, 100–1, 103
Copernicus crater 30
Crocefisso–Nizzeti 182
Cumbre Vieja ridge 5, 15
debris aprons
Venus
morphology 353–9
morphometry 359–61
debris avalanches
defined, 7
Hawaiian Islands 295
Réunion 298–302
INDEX

Deception Island
plate tectonic character 254, 255
seismological study
method 257
results 257–62
results discussed 262–4
setting 253–4, 255
stratigraphy 254–6
structure 257
decompression 361
def ormation
basement 95–6
numerical modelling 105–9
quantification 102–3
relation to pore pressure 85–8
degassing, effect on pore pressure of 82–3
digital evaluation modelling (DEM) 299
digital terrain modelling
methods 296–7
results 297–302
dyke injection
contribution to flank failure 47–50
lunar 27
relation to pore fluid pressure 46–7
relation to rifting 8–10, 129
dyke swarms 8–10
earthquakes (seismic), effect on flank failure 50–1
El Chonco 99
El Coyol Group 97
El Hierro 5, 8, 125, 126, 127, 131, 132, 133
Elysium Mons 323, 326, 334, 335, 336, 339
Elysium region 16, 323–7
eruptions
prediction of 113–14
triggering 113
Esan Skyzawa-yama 267, 268, 278
Etna see Mount Etna
fabric, role in failure 7–8
fault creep 179–80
Etna study
measurement sites 181–6
significance of results 186–90
fault systems
Mount Etna 194–9
Roccamonfnina 219–20
faulting, relation to pore pressure of 85–8
flank failure geometry 47–8
relation to mechanical pore fluid pressure 48–50
relation to thermal pore fluid pressure 50
forecasting of eruptions 18–19
friction, effective coefficient of (µ), relation to collapse 79–80
Fuerteventura 125, 126, 127, 133
Galápagos Islands
shield volcano 338, 339
submarine slides 12
Geisha seamounts 339
geochemistry, Hawaiian Island turbidites 285–8
geomorphology, Roccamonfnina 216–19
glass, volcanic 286
Gomera 125, 126, 127, 133
Gough Island 128
grading in mass flows 242
Gran Canaria 125, 126, 127, 133
gravitational collapse
earth volcanoes 340–1
martian volcanoes 341–3
gravitational sliding and thrusting 11, 169
gravity anomaly, Bracciano 231
ground movement
application of inverse rate method
method 111–12
study of Etna 112–13
use in eruption prediction 113–14
Guinevere Platinia 354
Hadriaca Patera 329, 334, 335, 336
Harimkotan 17
Hawaiian Islands 1, 4, 10, 11, 12
flank collapse 341
landslides 281, 283, 295
rift zones 339–40
setting 281–2
shield volcano structure 309, 339
submarine volcano structure 309, 339
turbidites

correlation 290–2
geochemistry 285–8
origins 288–90
petrography 285
role in deep sea sedimentation 292
stratigraphy 283–5
volcanic sand study 290
see also Kilauea; Mauna Loa
Hawaiian Ridge 13, 14, 39–40
Hawaiian rifts 129
hazard assessment for instability 16–18
Canary Islands 131–4
Hecates Tholus 323, 326–7, 334, 335, 336, 339
Hekla 338, 339
Helen Planitia 353, 359
Hellas region 327–30
Hokkaido volcanoes 276–70
caldera formation 276–7
hydrologic mass flows
Tokachidake 274–6
Usu 270–4
Hudson, Volcan 245
hydrogeology, Mount Etna 199–200
hydrologic mass flows
Tokachidake 274–6
Usu 270–4
Iceland 338, 339
Iizuna volcano 95
instability, coastal
causes 2–3
defined 1
development 3–4
frequency of occurrence 2
rifting 8–10
role of water 5
triggering mechanisms 4–5
INDEX

intrusive bodies
 effect on Etna stability 204
 see also dyke injection
inverse rate method 111–12
 application to Etna 112–13
 use in eruption prediction 113–14
Irumukeppu-yama 268, 269
Ischia
 evolution 249
 uplift estimates
 methods of analysis 249–51
 results discussed 251
Japan 1, 95
 Esan Skyzawa-yama 267, 268, 278
 Hokkaido 276–70
 caldera formation 276–7
 hydrologic mass flows 270–6
 Irumukeppu-yama 268, 269
 Komagatake 267, 268, 278
 Matsushiro 83
 Minami-dake 268, 270, 278
 Niseko 268, 278
 Onnebetsu-dake 268, 269–70, 278
 Oshima Oshishima 267, 268, 278
 Shikaribetsu 268–9
 Shiribetsu-dake 268, 278
 Tokachidake 268, 269, 278, 274–6
 Unzen 7, 17
 Usu 83, 267, 268, 278, 270–4
 Yake-dake 83
Java 95
 Jovus Tholus 323, 334, 335, 336, 339
Kamchatka 1, 10
 Kick 'em Jenny 17
 setting 115–17
 tsunamigenic potential 122–3
Kilauea 11, 12, 14, 282, 290
 caldera 309
 Klyuchevshoi 10
 Komagatake 267, 268, 278
 Kurile Islands 1, 17
La Palma 5, 8, 15, 125, 126, 127, 131, 132, 133
 La Piena 99
lahar, defined 7
Lahar Facies 237–8
 distribution 238
 stratigraphy 239
 transport mechanisms 241–5
landslides
 Canary Islands 128, 131
 Hawaiian Islands 281, 283, 295
 Réunion 297
 debris avalanches 298–302
 modelling 302–4
 see also slope failure
 Lanzarote 125, 126, 127, 133
 laser altimetry
 airborne method 139–40
 application in morphometry 146–8
 general method 138–9
 use in volcano monitoring
 Mount Adams 145–6
 Mount Rainier 145–6
 Mount St Helens 140–4
 Lassen Peak (California) 365
 Latian Volcanic Province 225
 Lesser Antilles
 setting 115–17
 tsunamigenic potential 17, 122–3
 Loma de la Asperaza 366, 368
 Loma La Teta 99
 Loma Redonda landslide 366, 368
 Long Valley 263
Maderas (Nicaragua) 10, 96, 98, 101, 103
 magma chamber collapse 308
 maria, lunar 28
 Marion Island 128
 Marquesas 12, 281
 Mars 1, 15–16
 calderas
 characters 310–13
 classification 333–6
 deformation 336–7
 flank structures 337–9
 gravitational collapse 340–3
 regional studies
 Elysium 16, 323–7
 Hellas 327–30
 Syrtis Major 330–2
 Tharsis 16, 35, 313–23
 rift zones 339–40
 sizes 332–3
 igneous processes 34–5
 volcano structures 33–4, 35–9
 Martinique 1, 12
 Mascualucia fault system 195
 mass flow deposits of Monte Vulture 237–9
 emplacement 241–5
 lithology 239–40
 summary 245–6
 mass movement
 defined 267
 factors affecting 267
 Hokkaido examples 267–70
 caldera formation 276–7
 Tokachidake 274–6
 Usu 270–4
 mass transport 5–6
 mathematical modelling, basement deformation
 105–9
 Matsushiro 83
 Mauna Loa 12, 15, 282
 debris avalanche 45
 Meroe Patera 330, 332, 334, 337
 Mexico 3–4, 7–8, 16
 Minami-dake 268, 270, 278
 modelling
 analogue modelling of landslides 302–4
 digital evaluation modelling (DEM) 299
 digital terrain modelling
 methods 296–7
 results 297–302
modelling (continued)
mathematical modelling
basement deformation 105–9
stress modelling
parameters 67–9
results 70–3
summary 73–4
Mokosha Mons 352, 353, 355
Mombacho 1, 96, 98, 99–100, 103
Monte Vulture
mass flow deposits 238–9
emplacement 241–5
lithology 239–40
summary 245–6
setting 237–8
Moon 15
igneous processes 26–7
lack of calderas 310
maria 28
seismicity 30
volcano structures 26
morphometric analysis 146–8
Mount Adams 145–6
Mount Etna 4, 8, 12, 15, 169–70
eruption prediction 113–14
eruption triggering 113
explosion-quake monitoring
methods 373–4
results 374–5
spectral analysis 375–9
fault creep study
measurement sites 181–6
significance of results 186–90
flank collapse 111, 341
instability factors 204–6
basement 200–3
fault systems
Mascalucia 195
Pernicana 194
Ragalna 195–9
Trecastagni 195
gravitational 153–4, 169
Holocene uplift 203
hydrogeology 199–200
intrusive bodies 204
magma emplacement 156
regional uplift 156, 165–6
sea-level change 156–7
seismicity 199
tectonic 154–6
seismicity study 170–1
methods 171
results 171–4
significance of results 174–6
vertical ground deformation 111–12
Mount Rainier
laser altimetry 145–6
morphometric analysis 148
Mount St Helens 1, 6, 16
collapse classification 77
flank collapse 340
lahars 7, 8
laser altimetry 140–4
Mount Shasta 7, 8
Moyotepe 99
Navka Platinia 352, 354, 362, 364, 368
nested calderas 308
neutral buoyancy zone (NBZ)
Moon 27, 28–9
Venus 30–2
Nevado del Ruiz 17
Nevado di Colima 3–4, 7–8, 16
Nicaragua see Concepión; Maderas; Mombacho
Nicaragua
basement geology 97
volcano construction 97–9
volcano deformation
numerical modelling 105–9
quantification 102–3
volcano description
Concepión 10, 96, 98, 100–1, 103
Maderas 10, 96, 98, 101, 103
Mombacho 1, 96, 98, 99–100, 103
San Cristobal 96, 98, 99, 103
Nigorikawa Caldera 268, 276
Nili Patera 330, 331–2, 334, 337
Niobe Platinia 356, 364, 368
Niseko 268, 278
Nyiragongo 338, 339
Oahu 282
oceanic islands, landslides 295
olivine geochemistry 286–8
Olympus Mons 15, 33–4, 36–7
caldera 309, 311, 312, 313–16, 334, 335, 336–7, 339
gravitational collapse 341, 342
morphometry 148, 150
Olympus-type caldera 335
Onnebetsu-dake 268, 269–70, 278
Oshima Ohshima 267, 268, 278
overpressurization 27
palaeomagnetism 283–4
palaeoshoreline change
implications for volcano instability 165–6
methods of study 157
regional studies in Sicily 158–65
Pavonius Mons 37, 38, 318–19, 334, 335, 336, 337, 338, 339
Peneus Patera 329, 334, 336
Pernicana fault system 194
petrography, Hawaiian Island turbidites 285
Phoebe Regio 352, 355
Piton de la Fournaise 1, 8, 14, 15, 295–6
flank collapse 341
landslide analogue modelling 302–4
methods 296–7
results 297–302
results discussed 304–5
rift zones 339
Piton des Neiges 12, 295
Piton du Carbet 12
plutonic complexes see intrusive bodies
INDEX

pore-fluid pressure 4, 5
 as fraction of lithostatic load (λ) 80–1
 aquathermal effects 81–2
 clastic dykes effects 83–5
 deformation effects 85–8
 degassing effects 82–3
 monitoring and predicting 89–90
 relation to collapse 80
 relation to dyking
 mechanical 46–7, 48–50
 thermal 47, 50
 sustaining high values 88–9
Pozzillo Soprano 184
Prince Edward Island 128
Provenzana-Pernicana fault system 185
Puu Oo eruption 290
Rabaul 263
radiocarbon dating 250
radiolaria and turbidite ages 284
Ragalna fault system 195–9
Réunion 128, 281, 339
 Piton de la Fournaise 1, 8, 14, 15, 295–6
 flank collapse 341
 landslide analogue modelling 302–4
 methods 296–7
 results 297–302
 results discussed 304–5
 rift zones 339
 Piton des Neiges 12, 295
rift features
 Canary Islands 125–8
 genesis of 128–9
 Hawaii 129
rift zones
 earth volcanoes 339, 340
 martian volcanoes 339, 340
 role in failure 8–10
Rivas Formation 97
Roccamonfina
 geomorphology 216–19
 history of research 209–10
 setting 210
 stratigraphy 210–16
 structure 219–20
 summary 220–3
Roque Nublo Group 83, 86
Sabatini Volcanic District (SVD) see Bracciano Depression
Salton Sea volcanic field 83
San Cristobal 96, 98, 99, 103
San Giovanni Bosco-Guardia 184
San Leonardello 184–5
Santa Agata li Battiati 181
Santa Tecla fault 184
Sapas Mons 32, 33, 355, 362
Sciara del Fuoco 55, 57, 60
Seilichenti 184
sea-level change
 implications for volcano instability 165–6
 methods of study 157
 regional studies in Sicily 158–65
 seismic activity
 Etna study
 methods 171
 results 171–4
 results discussed 174–6
 seismic sections 232, 233
 seismicity
 explosion-quakes
 methods of monitoring 373–4
 results 374–5
 spectral analysis 375–9
 discussed 379–80
 Moon 30
 Mount Etna 199
 seismological study
 Deception Island
 method 257
 results 257–62
 results discussed 262–4
Severgina 17
 shield volcanoes 2, 15
Shikaribetsu 268–9
Shiribetsu-dake 268, 278
shoreline studies 250
 see also palaeoshoreline change
Sicily
 palaeoshoreline study 157–8
 north coast 163–5
 south-east coast 158–9
 volcanic coast 159–63
 shoreline uplift and volcano instability 165–6
 see also Mount Etna
Sif Mons morphometry 148, 150
Silver Reef landslide 366, 368
Skjaldbreidur shield
 laser altimetry 145, 146
 morphometry 147, 148, 150
 slope failure
 geomorphic processes causing
 Earth 361, 365, 366–8
 Venus 361–4, 365, 368–9
 slump, defined 15
 slumping
 Hawaiian Islands 295
 Mount St Helens 143–4
Socompa 7, 8
 collapse classification 77, 78
 spectral analysis
 Strombolian explosion-quakes
 February crisis 375–7
 May crisis 377–8
 October crisis 378–9
Stazzo 184
 stratigraphy
 Bracciano 228
 Hawaiian Island turbidites 283–5
 Roccamonfina 214, 216
 Stromboli 56–7
 stratovolcanoes 2
 stress fields, relation to volcanic structure 338–9, 341
 stress modelling
 history of research 65–6
stress modelling (continued)

Stromboli
- model parameters 67–9
- results 70–3
- summary 73–4

Stromboli 1, 8, 12, 15, 17
- age 60
- dyke swarms 55
- explosion-quake monitoring
 - methods 373–4
 - results 374–5
 - spectral analysis 375–9
 - discussed 379–80
- geometry 57–9
- morphology 59–60
- stratigraphy 56–7
 - relation to collapse 60–2
- stress modelling
 - parameters 67–9
 - results 70–3
 - summary 73–4
- structure 66–7

Strombolicchio 55
- submarine slides 12
- Sumatra 83
- Suoh volcanic field 83
- synthetic aperture radar (SAR) interferometry 137, 141–2

Syrtis Major region 330–2

Taburiente 129
- temperature effects on pore pressure 81–2
- Tenerife 125, 126, 127, 131, 133
- Tharsis region 16, 35, 313–3
- Tharsis Tholus 322–3, 334, 335, 336, 339, 343
- thermal effects see temperature
- Tinatin Planitia 352, 354
- Tokachidake 83, 268, 269, 278
 - hydrologic mass flows 274–6
- topographic analysis by laser altimetry
 - airborne method 139–40
 - general method 138–9
 - volcano morphology 146–8
 - volcano topography
 - Mount Adams 145–6
 - Mount Rainier 145–6
 - Mount St Helens 140–4
- Torrente Fago 185
- Totogalpa Formation 97
- Trecastagni fault system 195
- Tremestieri fault 181–2
- Tristan da Cunha 12, 128

INDEX

tsunamis 17
- landslide generation 117–20
- quantification of potential 120–2
- Caribbean 122–3
- volcanic causes 115, 118

turbidites 15
- Hawaiian Islands
 - correlation 290–2
 - geochemistry 285–8
 - origins 288–90
 - petrography 285
 - role in deep sea sedimentation 292
 - stratigraphy 283–5
- Tyrrenian Platea 329–30, 334, 335

Ulysses Patera 323, 334, 335, 336, 339
- Unzen (Japan) 7, 17
- Unzen-type collapse 77–8
- uplift
 - Mount Etna 203
 - see also palaeoshoreline change
- Uranus Patera 321, 334, 335, 336, 337, 339
- Uranus Tholus 323, 334, 335, 339
- Usu 83, 267, 268, 278
 - hydrologic mass flows 270–4

Venus 1, 15, 16
- caldera-like features 309, 310
- debris aprons
 - morphology 353–9
 - morphometry 359–61
 - geomorphic processes in slope failure 361–9
 - igneous processes 30–3
- modified domes (MD) 349
 - morphology 351–2, 365
 - morphometry 352
- scalloped margin domes (SMD) 349
- volcano structures 30

volcanic domes
- Venus
 - modified domes (MD) 351–2, 365
 - scalloped margin domes (SMD) 349
- volcanic spreading 11
- volcaniclastics
 - defined 6–7
 - influence on stability 48–9
- West African Rift 338, 339

Yake-dake 83
- Yellow Tuff Formation (YTF) 255, 256