Skip to main content

Main menu

  • Home
    • Series home
    • Lyell Collection home
    • Geological Society home
  • Content
    • Online First
    • Current volume
    • All volumes
    • Collections
    • Supplementary publications
    • Open Access
  • Subscribe
    • GSL fellows
    • Institutions
    • Corporate
    • Other member types
  • Info
    • Authors
    • Librarians
    • Readers
    • Access for GSL Fellows
    • Access for other member types
    • Press office
    • Accessibility
    • Help
  • Alert sign up
    • eTOC alerts
    • Online First alerts
    • RSS feeds
    • Newsletters
    • GSL blog
  • Propose
  • Geological Society of London Publications
    • Engineering Geology Special Publications
    • Geochemistry: Exploration, Environment, Analysis
    • Journal of Micropalaeontology
    • Journal of the Geological Society
    • Lyell Collection home
    • Memoirs
    • Petroleum Geology Conference Series
    • Petroleum Geoscience
    • Proceedings of the Yorkshire Geological Society
    • Quarterly Journal of Engineering Geology and Hydrogeology
    • Quarterly Journal of the Geological Society
    • Scottish Journal of Geology
    • Special Publications
    • Transactions of the Edinburgh Geological Society
    • Transactions of the Geological Society of Glasgow
    • Transactions of the Geological Society of London

User menu

  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Geological Society, London, Special Publications
  • Geological Society of London Publications
    • Engineering Geology Special Publications
    • Geochemistry: Exploration, Environment, Analysis
    • Journal of Micropalaeontology
    • Journal of the Geological Society
    • Lyell Collection home
    • Memoirs
    • Petroleum Geology Conference Series
    • Petroleum Geoscience
    • Proceedings of the Yorkshire Geological Society
    • Quarterly Journal of Engineering Geology and Hydrogeology
    • Quarterly Journal of the Geological Society
    • Scottish Journal of Geology
    • Special Publications
    • Transactions of the Edinburgh Geological Society
    • Transactions of the Geological Society of Glasgow
    • Transactions of the Geological Society of London
  • My alerts
  • Log in
  • Log out
  • My Cart
  • Follow gsl on Twitter
  • Visit gsl on Facebook
  • Visit gsl on Youtube
  • Visit gsl on Linkedin
Geological Society, London, Special Publications

Advanced search

  • Home
    • Series home
    • Lyell Collection home
    • Geological Society home
  • Content
    • Online First
    • Current volume
    • All volumes
    • Collections
    • Supplementary publications
    • Open Access
  • Subscribe
    • GSL fellows
    • Institutions
    • Corporate
    • Other member types
  • Info
    • Authors
    • Librarians
    • Readers
    • Access for GSL Fellows
    • Access for other member types
    • Press office
    • Accessibility
    • Help
  • Alert sign up
    • eTOC alerts
    • Online First alerts
    • RSS feeds
    • Newsletters
    • GSL blog
  • Propose

Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes

S.-s. Sun and W. F. McDonough
Geological Society, London, Special Publications, 42, 313-345, 1 January 1989, https://doi.org/10.1144/GSL.SP.1989.042.01.19
S.-s. Sun
Division of Petrology and Geochemistry, Bureau of Mineral Resources, Geology and Geophysics G.P.O. Box 378, Canberra, ACT 2601
  • Find this author on Google Scholar
  • Search for this author on this site
W. F. McDonough
  • Find this author on Google Scholar
  • Search for this author on this site
PreviousNext
  • Article
  • Info & Metrics
  • PDF
Loading

Summary

Trace-element data for mid-ocean ridge basalts (MORBs) and ocean island basalts (OIB) are used to formulate chemical systematics for oceanic basalts. The data suggest that the order of trace-element incompatibility in oceanic basalts is Cs ≈ Rb ≈ (≈ Tl) ≈ Ba(≈ W) > Th > U ≈ Nb = Ta ≈ K > La > Ce ≈ Pb > Pr (≈ Mo) ≈ Sr > P ≈ Nd (> F) > Zr = Hf ≈ Sm > Eu ≈ Sn (≈ Sb) ≈ Ti > Dy ≈ (Li) > Ho = Y > Yb. This rule works in general and suggests that the overall fractionation processes operating during magma generation and evolution are relatively simple, involving no significant change in the environment of formation for MORBs and OIBs.

In detail, minor differences in element ratios correlate with the isotopic characteristics of different types of OIB components (HIMU, EM, MORB). These systematics are interpreted in terms of partial-melting conditions, variations in residual mineralogy, involvement of subducted sediment, recycling of oceanic lithosphere and processes within the low velocity zone. Niobium data indicate that the mantle sources of MORB and OIB are not exact complementary reservoirs to the continental crust. Subduction of oceanic crust or separation of refractory eclogite material from the former oceanic crust into the lower mantle appears to be required. The negative europium anomalies observed in some EM-type OIBs and the systematics of their key element ratios suggest the addition of a small amount (⩽1% or less) of subducted sediment to their mantle sources. However, a general lack of a crustal signature in OIBs indicates that sediment recycling has not been an important process in the convecting mantle, at least not in more recent times (⩽2 Ga). Upward migration of silica-undersaturated melts from the low velocity zone can generate an enriched reservoir in the continental and oceanic lithospheric mantle. We propose that the HIMU type (eg St Helena) OIB component can be generated in this way. This enriched mantle can be re-introduced into the convective mantle by thermal erosion of the continental lithosphere and by the recycling of the enriched oceanic lithosphere back into the mantle.

  • © 1989 The Geological Society

References

    1. Alibert C.,
    2. Michard A.,
    3. Albarède F.
    (1986) Isotope and trace element geochemistry of Colorado plateau volcanics. Geochimica et Cosmochimica Acta 50:2735–2750.
    OpenUrlCrossRefWeb of Science
    1. Allègre C. J.,
    2. Turcotte D. L.
    (1986) Implications of a two-component marble-cake mantle. Nature 323:123–127.
    OpenUrlCrossRefWeb of Science
    1. Allègre C. J.,
    2. Hamelin B.,
    3. Provost A.,
    4. Duprè B.
    (1987) Topology in isotopic multispace and origin of mantle chemical heterogeneities. Earth and Planetary Science Letters 81:319–337.
    OpenUrlCrossRefWeb of Science
    1. Anderson D. L.
    (1982) Hotspots, polar wander, Mesozoic convection and the Geoid. Nature 297:391–393.
    OpenUrlCrossRefWeb of Science
    1. Armstrong R. L.
    (1968) A model for the evolution of strontium and lead isotopes in a dynamic Earth. Reviews of Geophysics 6:175–199.
    OpenUrlCrossRefWeb of Science
    1. Armstrong R. L.
    (1981) Radiogenic isotopes: the case for crustal recycling on a near-steady-state no-continental growth earth. Philosophical Transactions of the Royal Society of London 301:443–472.
    OpenUrlCrossRef
    1. Bell K.,
    2. Blenkinsop J.
    (1987) Nd and Sr isotopic compositions of East African carbonatites: implications for mantle heterogeneity. Geology 15:99–102.
    OpenUrlAbstract/FREE Full Text
    1. Brooks C.,
    2. James D. E.,
    3. Hart S. R.
    (1976) Ancient lithosphere: its role in young continental volcanism. Science 193:1086–1094.
    OpenUrlFREE Full Text
    1. Carlson R. W.
    (1984) Isotopic constraints on Columbia River flood basalt genesis and the nature of the subcontinental mantle. Geochimica et Cosmochimica Acta 48:2357–2372.
    OpenUrlCrossRefWeb of Science
    1. Chen C-Y,
    2. Frey F. A.
    (1985) Trace element and isotopic geochemistry of lavas from Haleakala Volcano, East Maui, Hawaii: implications for the origin of Hawaiian basalts. Journal of Geophysical Research 90:8743–8768.
    OpenUrlCrossRef
    1. Clague D. A.,
    2. Frey F. A.
    (1982) Petrology and trace element geochemistry of the Honolulu Volcanics, Oahu: implications for the oceanic mantle below Hawaii. Journal of Petrology 23:447–504.
    OpenUrlCrossRefWeb of Science
    1. Cohen R. S.,
    2. O’Nions R. K.
    (1982) Identification of recycled continental meterial in the mantle from Sr, Nd and Pb isotope investigations. Earth and Planetary Science Letters 61:73–84.
    OpenUrlCrossRefWeb of Science
    1. Cox K. G.
    (1978) Flood basalts, subduction and the break-up of Gondwanaland. Nature 274:47–49.
    OpenUrlCrossRef
    1. Creager K. C.,
    2. Jordan T. H.
    (1984) Slab penetration in the lower mantle. Journal of Geophysical Research 89:3031–3049.
    OpenUrl
    1. Davies G. F.
    (1981) Earth’s neodymium budget and structure and evolution of the mantle. Nature 290:208–213.
    OpenUrlCrossRefWeb of Science
    1. Dudás F. Ö.,
    2. Carlson R. W.,
    3. Eggler D. H.
    (1987) Regional middle Proterozoic enrichment of the subcontinental mantle source of igneous rocks from central Montana. Geology 15:22–25.
    OpenUrlAbstract/FREE Full Text
    1. Duncan A. R.,
    2. Erlank A. J.,
    3. March J. S.
    (1984) Regional geochemistry of the Karoo igneous province. Special Publication of the Geological Society of South Africa 13:355–388.
    OpenUrl
    1. Duncan R. A.,
    2. McCulloch M. T.,
    3. Barczus H. G.,
    4. Nelson D. R.
    (1986) Plume versus lithospheric sources for the melts at Ua Pou, Marquesas Island. Nature 303:142–146.
    OpenUrl
    1. Dupuy C.,
    2. Vidal P.,
    3. Barsczus H. G.,
    4. Chauvel C.
    (1987) Origin of basalts from the Marquesas Archipelago (south central Pacific Ocean): isotope and trace element constraints. Earth and Planetary Science Letters 82:145–152.
    OpenUrlCrossRefWeb of Science
    1. Fodor R. V.,
    2. Bauer G. R.,
    3. Jacobs R. S.,
    4. Bornhorst T. J.
    (1987) Kahoolawe Island, Hawaii: tholeiitic, alkalic and unusual hydrothermal(?) “enrichment” characteristics. Journal of Volcanology and Geothermal Research 31:171–176.
    OpenUrlCrossRefWeb of Science
    1. Fraser K. J.,
    2. Hawkesworth C. J.,
    3. Erlank A. J.,
    4. Mitchell R. H.,
    5. Scott-Smith B. H.
    (1986) Sr, Nd and Pb isotope and minor element geochemistry of lamproites and kimberlites. Earth and Planetary Science Letters 76:57–70.
    OpenUrlWeb of Science
    1. Frey F. A.,
    2. Clague D. A.
    (1983) Geochemistry of diverse basalts types from Loihi Seamount, Hawaii: petrogenetic implications. Earth and Planetary Science Letters 66:337–355.
    OpenUrlCrossRefWeb of Science
    1. Frey F. A.,
    2. Green D. H.
    (1974) The mineralogy, geochemistry and origin of lherzolite inclusions in Victorian basanites. Geochimica et Cosmochimica Acta 38:1023–1059.
    OpenUrlCrossRefWeb of Science
    1. Frey F. A.,
    2. Green D. H.,
    3. Roy S. D.
    (1978) Integrated models of basalt petrogenesis: a study of quartz tholeiites to olivine melilitites from South Eastern Australia utilizing geochemical and experimental petrological data. Journal of Petrology 19:463–513.
    OpenUrlCrossRefWeb of Science
    1. Fujimaki H.,
    2. Tatsumoto M.,
    3. Aoki K.-I.
    (1984) Partition coefficients of Hf, Zr, and REE between phenocrysts and groundmasses. Journal of Geophysical Research 89:B662–B672.
    OpenUrlCrossRef
    1. Gast P. W.
    (1968) Trace element fractionation and the origin of tholeiitic and alkaline magma types. Geochimica et Cosmochimica Acta 32:1057–1086.
    OpenUrlCrossRefWeb of Science
    1. Green D. H.
    (1971) Composition of basaltic magmas as indicators of conditions of origin: application to oceanic volcanism. Philosophical Transactions of the Royal Society of London 268:707–725.
    OpenUrlCrossRef
    1. Green T. H.
    (1978) Rare earth geochemistry of basalts from Norfolk Island, and implications for mantle inhomogeneity in the rare earth elements. Geochemical Journal 12:165–172.
    OpenUrlWeb of Science
    1. Gurnis M.,
    2. Davies G. F.
    (1986) The effect of depth-dependent viscosity on convective mixing in the mantle and the possible survival of primitive mantle. Geophysical Research Letters 13:541–544.
    OpenUrlCrossRefWeb of Science
    1. Hager B. H.,
    2. Gurnis M.
    (1987) Mantle convection and the state of the earth’s interior. Reviews of Geophysics 25:1277–1285.
    OpenUrlWeb of Science
    1. Hanson G. N.
    (1977) Geochemical evolution of the suboceanic mantle. Journal of the Geological Society of London 134:235–253.
    OpenUrlAbstract/FREE Full Text
    1. Hart S. R.
    (1984) A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature 309:753–757.
    OpenUrlCrossRefWeb of Science
    1. Hart S. R.,
    2. Gerlach D. C.,
    3. White W. M.
    (1986) A possible new Sr-Nd-Pb mantle array and consequences for mantle mixing. Geochimica et Cosmochimica Acta 50:1551–1557.
    OpenUrlCrossRefWeb of Science
    1. Hawkesworth C. J.,
    2. Mantovani M. S. M.,
    3. Taylor P. N.,
    4. Palacz A.
    (1986) Evidence from the Parana of south Brazil for a continental contribution to Dupal basalts. Nature 322:356–359.
    OpenUrlCrossRefWeb of Science
    1. Hawkesworth C. J.,
    2. Norry M. J.,
    3. Roddick J. C.,
    4. Vollmer R.
    (1979) 143Nd/144Nd and 87Sr/86Sr ratios from the Azores and their significance in LIL-element enriched mantle. Nature 280:28–31.
    OpenUrlCrossRefWeb of Science
    1. Hawkesworth C. J.,
    2. Rogers N. W.,
    3. van Calsteren P.,
    4. Menzies M. A.
    (1984) Mantle enrichment processes. Nature 311:331–335.
    OpenUrlCrossRefWeb of Science
    1. Hergt J. M.
    (1987) The Origin and Evolution of the Tasmania Dolerites. Unpublished PhD thesis, Australian National University.
    1. Hofmann A. W.,
    2. White W. M.
    (1982) Mantle plumes from ancient oceanic crust. Earth and Planetary Science Letters 57:421–436.
    OpenUrlCrossRefWeb of Science
    1. Hofmann A. W.,
    2. White W. M.
    (1983) Ba, Rb and Cs in the Earth’s mantle. Zeitschrift für Naturforschung 38a:256–266.
    OpenUrl
    1. Hofmann A. W.,
    2. Jochum K. P.,
    3. Seufert M.,
    4. White W. M.
    (1986) Nb and Pb in oceanic basalts: new constraints on mantle evolution. Earth and Planetary Science Letters 79:33–45.
    OpenUrlCrossRefWeb of Science
    1. Jagoutz E.,
    2. Palme H.,
    3. Baddenhausen H.,
    4. Blum K.,
    5. Cendales M.,
    6. Dreibus G.,
    7. Spettel B.,
    8. Lorenz V.,
    9. Wänke H.
    (1979) Proceedings of the 10th Lunar and Planetary Science Conference Geochimica et Cosmochim Acta, The abundances of major, minor and trace elements in the Earth’s mantle as derived from primitive ultramafic nodules, 2, Suppl. 11, pp 2031–2050.
    1. Jaques A. L.,
    2. Sun S.-s.,
    3. Chappell B. W.
    (1988) Proceedings of the 4th International Kimberlite Conference Geological Society of Australia Special Publication, Geochemistry of the Argyle (AK1) lamproite pipe, Western Australia. in press.
    1. Jochum K. P.,
    2. Seufert H. M.,
    3. Spettel B.,
    4. Palme H.
    (1986) The solar-system abundances of Nb, Ta, and Y, and the relative abundances of refractory lithophile elements in differentiated planetary bodies. Geochimica et Cosmochimica Acta 50:1173–1183.
    OpenUrlCrossRefWeb of Science
    1. Johnson R. W.,
    2. Jaques A. L.,
    3. Langmuir C. H.,
    4. Perfit M. R.,
    5. Staudigel H.,
    6. Dunkley P N.,
    7. Chappell B. W.,
    8. Taylor S. R.,
    9. Baekisapa M.
    (1987) Ridge subduction and forearc volcanism: petrology and geochemistry of rocks dredged from the western Solomon arc and Woodlark basin. in Marine Geology, Geophysics, and Geochemistry of the Woodlark Basin — Solomon Islands Region, Circum-Pacific Council of Energy and Mineral Resources, Earth Science Series, eds Taylor B., Exon N. F. in press.
    1. Kato T.,
    2. Irifune T.,
    3. Ringwood A. E.
    (1987) Majorite partitioning behavior and petrogenesis of the earth’s upper mantle. Geophysical Research Letters 14:546–549.
    OpenUrlWeb of Science
    1. Kay R. W.
    (1979) Zone refining at the base of lithospheric plates: a model for steady-state asthenosphere. Tectonophysics 55:1–9.
    OpenUrlCrossRefWeb of Science
    1. Kramers J. D.
    (1977) Lead and strontium isotopes in Cretaceous kimberlites and mantle-derived xenoliths from southern Africa. Earth and Planetary Science Letters 34:419–431.
    OpenUrlCrossRefWeb of Science
    1. Kramers J. D.,
    2. Smith C. B.,
    3. Lock N. P.,
    4. Harmon R. S.,
    5. Boyd F. R.
    (1981) Can kimberlites be generated from an ordinary mantle? Nature 291:53–56.
    OpenUrlCrossRef
    1. Kuehner S. M.,
    2. Edgar A. D.,
    3. Arima M.
    (1981) Petrogenesis of the ultrapotassic rocks from the Leucite Hills, Wyoming. American Mineralogist 66:663–667.
    OpenUrlAbstract
    1. Langmuir C. H.,
    2. Hanson G. N.
    (1980) Philosophical Transactions of the Royal Society of London, An evaluation of major element heterogeneity in the mantle sources of basalts, Series A, 297, pp 383–407.
    OpenUrl
    1. Langmuir C. H.,
    2. Bender J. F.,
    3. Bence A. E.,
    4. Hanson G. N.,
    5. Taylor S. R.
    (1977) Petrogenesis of basalts from the FAMOUS area: Mid-Atlantic Ridge. Earth and Planetary Science Letters 36:133–156.
    OpenUrlCrossRefWeb of Science
    1. Le Roex A. P.
    (1986) Geochemical correlation between southern African kimberlites and South Atlantic hotspots. Nature 324:243–245.
    OpenUrlCrossRefWeb of Science
    1. Li S.,
    2. Hart S. R.
    (1986) Sources of evolution of Hawaiian volcanism: isotopic constraints. Earth and Planetary Science Letters, in press.
    1. Liotard J. M.,
    2. Barsczus H. G.,
    3. Dupuy C.,
    4. Dostal J.
    (1986) Geochemistry and origin of basaltic lavas from Marquesas Archipelago, French Polynesia. Contributions to Mineralogy and Petrology 92:260–268.
    OpenUrlCrossRefWeb of Science
    1. Macdougall J. D.,
    2. Lugmair G. W.
    (1986) Sr and Nd isotopes in basalts from the East Pacific Rise: significance for mantle heterogeneity. Earth and Planetary Science Letters 77:273–284.
    OpenUrlCrossRefWeb of Science
    1. Mantovani M. S. M.,
    2. Marques L. S.,
    3. De Sousa M. A.,
    4. Civetti L.,
    5. Atalla L.,
    6. Innocenti F.
    (1985) Trace element and strontium isotope constraints on the origin and evolution of Paraná continental flood basalts of Santa Catarina State (Southern Brazil). Journal of Petrology 26:187–209.
    OpenUrlCrossRefWeb of Science
    1. McDonough W. F.,
    2. McCulloch M. T.
    (1987) The southeast Australian lithospheric mantle: implications for its growth and evolution. Earth and Planetary Science Letters 86:327–340.
    OpenUrlCrossRefWeb of Science
    1. McDonough W. F.,
    2. McCulloch M. T.,
    3. Sun S.-s.
    (1985) Isotopic and geochemical systematics in Tertiary—Recent basalts from south eastern Australia and implications for the evolution of the sub-continental lithosphere. Geochimica et Cosmochimica Acta 49:2051–2067.
    OpenUrlCrossRefWeb of Science
    1. McDonough W. F.,
    2. Sun S.-s.,
    3. Ringwood A. E.,
    4. Jagoutz E.
    (1987) Lunar and Planetary Science Conference Abstracts Rb and Cs in the Earth and Moon (Lunar and Planetary Institute, Houston), 18, pp 610–611.
    1. McKenzie D.
    (1984) The generation and compaction of partially molten rock. Journal of Petrology 25:713–765.
    OpenUrlCrossRefWeb of Science
    1. McKenzie D.,
    2. O’Nions R. K.
    (1983) Mantle reservoirs and ocean island basalts. Nature 301:229–231.
    OpenUrlCrossRef
    1. McLennan S. M.,
    2. Taylor S. R.
    (1981) Role of subducted sediments in island-arc magmatism: constraints from REE patterns. Earth and Planetary Science Letters 54:423–430.
    OpenUrlCrossRefWeb of Science
    1. Menzies M.
    (1983) in Continental Basalts and Mantle Xenoliths, Mantle ultramafic xenoliths in alkaline magmas: evidence for mantle heterogeneity modified by magmatic activity, eds Hawkesworth C. J., Norry M. J. (Shiva, Cheshire), pp 92–110.
    1. Menzies M.,
    2. Murthy V. R.
    (1980) Nd and Sr isotope geochemistry of hydrous mantle nodules and their host alkali basalts: implications for local heterogeneities in metasomatically veined mantle. Earth and Planetary Science Letters 46:323–334.
    OpenUrlCrossRefWeb of Science
    1. Murmatsu Y.
    (1983) Geochemical investigation of kimberlites from the Kimberley area, South Africa. Geochemical Journal 17:71–86.
    OpenUrlWeb of Science
    1. Murmatsu Y.,
    2. Wedepohl K. H.
    (1985) REE and selected trace elements in kimberlites from the Kimberley area (South Africa). Chemical Geology 51:289–301.
    OpenUrlCrossRefWeb of Science
    1. Nagashima K.,
    2. Miyawaki R.,
    3. Takase J.,
    4. Nakai I.,
    5. Sakurai K.-I.,
    6. Matsubara S.,
    7. Kato A.,
    8. Iwano S.
    (1986) Kimuraite, CaY2(CO3)4.6H2O, a new mineral from fissures in an alkali olivine basalt from Saga Prefecture, Japan, and new data on lokkaite. American Mineralogist 71:1028–1033.
    OpenUrlAbstract
    1. Nakamura E.,
    2. Campbell I. H. -,
    3. Sun s.-s.
    (1985) The influence of subduction processes on the geochemistry of Japanese alkaline basalts. Nature 316:55–58.
    OpenUrlCrossRefWeb of Science
    1. Navon O.,
    2. Stolper E.
    (1987) Geochemical consequences of melt percolation: the upper mantle as a chromatographic column. Journal of Geology 95:285–307.
    OpenUrlCrossRefWeb of Science
    1. Nelson D. R.,
    2. Chappell B. W.,
    3. Chivas A. R.,
    4. McCulloch M. T.
    (1987) Geochemical and isotopic evidence for a subducted oceanic lithosphere origin for carbonatites. Geochimica et Cosmochimica Acta 52:1–18.
    OpenUrlWeb of Science
    1. Nelson D. R.,
    2. McCulloch M. T.,
    3. Sun s.-s.
    (1986) The origins of ultrapotassic rocks as inferred from Sr, Nd and Pb isotopes. Geochimica et Cosmochimica Acta 50:231–245.
    OpenUrlCrossRefWeb of Science
    1. Newman S.,
    2. Finkel R. C.,
    3. Macdougall J. D.
    (1984) Comparison of 230Th-238U disequilibrium systematics in basalts from three hot spot regions: Hawaii, Prince Edward and Samoa. Geochimica et Cosmochimica Acta 48:315–324.
    OpenUrlCrossRefWeb of Science
    1. Newsom H. E.,
    2. White W. M.,
    3. Jochum K. P.,
    4. Hofmann A. W.
    (1986) Siderophile and chalcophile element abundances in oceanic basalts, Pb isotope evolution and growth of the Earth’s core. Earth and Planetary Science Letters 80:299–313.
    OpenUrlCrossRefWeb of Science
    1. Nicolas A.
    (1986) A melt extraction model based on structural studies in mantle peridotites. Journal of Petrology 27:999–1022.
    OpenUrlCrossRefWeb of Science
    1. O’Hara M. J.,
    2. Mathews R. E.
    (1981) Geochemical evolution in an advancing, periodically replenished, periodically tapped, continuously fractionated magma chamber. Journal of the Geological Society, London 138:237–277.
    OpenUrlAbstract/FREE Full Text
    1. Oversby V. M.,
    2. Gast P. W.
    (1968) Lead isotope compositions and uranium decay series disequilibrium in recent volcanic rocks. Earth and Planetary Science Letters 5:199–206.
    OpenUrlCrossRefWeb of Science
    1. Oxburgh E. R.,
    2. Turcotte D. L.
    (1968) Mid-ocean ridges and geotherm distribution during mantle convection. Journal of Geophysical Research 73:2643–2661.
    OpenUrl
    1. Palacz Z. A.,
    2. Saunders A. D.
    (1986) Coupled trace element and isotope enrichment in the Cook-Austral-Samoa islands, southwest Pacific. Earth and Planetary Science Letters 79:270–280.
    OpenUrlCrossRefWeb of Science
    1. Patchett P. J.
    (1983) Importance of Lu-Hf isotopic system in studies of planetary chronology and chemical evolution. Geochimica et Cosmochimica Acta 47:81–91.
    OpenUrlCrossRefWeb of Science
    1. Philpotts J. A.,
    2. Schnetzler C. C.
    (1970) Phenocryst-matrix partition coefficients for K, Rb, Sr and Ba, with application to anorthosite and basalt genesis. Geochimica et Cosmochimica Acta 34:307–322.
    OpenUrlCrossRefWeb of Science
    1. Richardson S. H.,
    2. Erlank A. J.,
    3. Duncan A. R.,
    4. Reid D. L.
    (1982) Correlated Nd, Sr and Pb isotope variation in Walvis Ridge basalts and implications for the evolution of their mantle source. Earth and Planetary Science Letters 59:327–342.
    OpenUrlCrossRefWeb of Science
    1. Richardson S. H.,
    2. Gurney J. J.,
    3. Erlank A. J.,
    4. Harris J. W.
    (1984) Origin of diamonds in old enriched mantle. Nature 310:198–202.
    OpenUrlCrossRefWeb of Science
    1. Richter F. M.
    (1985) Models of the Archaean thermal regime. Earth and Planetary Science Letters 73:350–360.
    OpenUrlCrossRefWeb of Science
    1. Ringwood A. E.
    (1982) Phase transformations and differentiation in subducted lithosphere: implications for mantle dynamics, basalt petrogenesis, and crustal evolution. Journal of Geology 90:611–643.
    OpenUrlCrossRefWeb of Science
    1. Ringwood A. E.,
    2. Irifune T.
    (1988) Nature of the 650-km seismic discontinuity: implications for mantle dynamics and differentiation. Nature 331:131–136.
    OpenUrlCrossRefWeb of Science
    1. Roden M. F.,
    2. Frey F. A.,
    3. Clague D. A.
    (1984) Geochemistry of tholeiitic and alkalic lavas from the Koolau Range, Oahu, Hawaii: implications for Hawaiian volcanism. Earth and Planetary Science Letters 69:141–158.
    OpenUrlCrossRefWeb of Science
    1. Roden M. F.,
    2. Hart S. R.,
    3. Frey F. A.,
    4. Melson W. G.
    (1984) Sr, Nd and Pb isotopic and REE geochemistry of St. Paul’s Rocks: the metamorphic and metasomatic development of an alkali basalt mantle source. Contributions to Mineralogy and Petrology 85:376–390.
    OpenUrlCrossRefWeb of Science
    1. Roden M. F.,
    2. Rama Murthy V.,
    3. Gaspar J. C.
    (1985) Sr and Nd isotopic composition of the Jacupiranga carbonatite. Journal of Geology 93:212–220.
    OpenUrlCrossRefWeb of Science
    1. Ryan J. G.,
    2. Langmuir C. H.
    (1987) The systematics of lithium abundances in young volcanic rocks. Geochimica et Cosmochimica Acta 51:1727–1741.
    OpenUrlCrossRefWeb of Science
    1. Saunders A. D.,
    2. Tarney J.
    (1979) The geochemistry of basalts from a back-arc spreading centre in the East Scotia Sea. Geochimica et Cosmochimica Acta 43:555–572.
    OpenUrlCrossRefWeb of Science
    1. Saunders A. D.,
    2. Tarney J.,
    3. Weaver S. D.
    (1980) Transverse chemical variations across the Antarctic Peninsula: implications for the genesis of calc-alkaline magmas. Earth and Planetary Science Letters 46:344–360.
    OpenUrlCrossRefWeb of Science
    1. Sawamoto H.
    (1987) Phase diagram of MgSiO3 at pressures up to 24 GPa and temperatures up to 2,200 °C — phase stability and properties of tetragonal garnet. In press.
    1. Schilling J. G.,
    2. Thompson G.,
    3. Kingsley R.,
    4. Humphris S.
    (1985) Hotspot-migrating ridge interaction in the south Atlantic. Nature 313:187–191.
    OpenUrlCrossRef
    1. Smith C.B.
    (1983) Pb, Sr and Nd isotopic evidence for sources of southern African Cretaceous kimberlites. Nature 304:51–54.
    OpenUrlCrossRefWeb of Science
    1. Smith C. B.,
    2. Gurney J. J.,
    3. Skinner E. M. W.,
    4. Clement C. R.,
    5. Ebrahim N.
    (1985) Geochemical character of southern African kimberlites: a new approach based on isotopic constraints. Transactions of Geological Society of South Africa 88:267–280.
    OpenUrl
    1. Staudigel H.,
    2. Zindler A.,
    3. Hart S. R.,
    4. Leslie T. M.,
    5. Chen C.-Y.,
    6. Clague D.
    (1984) The isotope systematics of a juvenile intraplate volcano: Pb, Nd, and Sr isotope ratios of basalts from Loihi Seamount, Hawaii. Earth and Planetary Science Letters 69:13–29.
    OpenUrlCrossRefWeb of Science
    1. Stille P.,
    2. Uunuh D. M.,
    3. Tatsumoto M.
    (1986) Pb, Sr, Nd and Hf isotopic constraints on the origin of Hawaiian basalts and evidence for a unique mantle source. Geochimica et Cosmochimica Acta 50:2303–2319.
    OpenUrlCrossRefWeb of Science
    1. Sun S.-s.
    (1980) Lead isotopic study of young volcanic rocks from mid-ocean ridges, ocean islands and island arcs. Philosophical Transactions of the Royal Society of London 297:409–445.
    OpenUrlCrossRef
    1. Sun S.-s.,
    2. Hanson G. N.
    (1975a) Origin of Ross Island basanitoids and limitations upon the heterogeneity of mantle sources for alkali basalts and nephelinites. Contributions to Mineralogy and Petrology 52:77–106.
    OpenUrlCrossRefWeb of Science
    1. Sun S.-s.,
    2. Hanson G. N.
    (1975b) Evolution of the mantle: geochemical evidence from alkali basalt. Geology 3:297–302.
    OpenUrlAbstract/FREE Full Text
    1. Sun S.-s.,
    2. Hanson G. N.
    (1976a) -Evolution of the mantle: geochemical evidence from alkali basalt: Reply. Geology 4:626–631.
    OpenUrlAbstract/FREE Full Text
    1. Sun S.-s.,
    2. Hanson G. N.
    (1976b) Rare earth element evidence for differentiation of McMurdo volcanics, Ross Island, Antarctica. Contributions to Mineralogy and Petrology 54:139–155.
    OpenUrlCrossRefWeb of Science
    1. Sun S.-s.,
    2. Nesbitt R. W.
    (1977) Chemical heterogeneity of the Archaean mantle, composition of the Earth and mantle evolution. Earth and Planetary Science Letters 35:429–448.
    OpenUrlCrossRefWeb of Science
    1. Sun S.-s.,
    2. Nesbitt R. W.,
    3. McCulloch M. T.
    (1988) Geochemistry and petrogenesis of siliceous high magnesian basalts of the Archaean and early Proterozoic. in Boninites and Related Rocks, ed Crawford A. J. (George Allen and Unwin, London) in press.
    1. Sun S.-s.,
    2. Nesbitt R. W.,
    3. Sharaskin A. Y.
    (1979) Geochemical characteristics of mid-ocean ridge basalts. Earth and Planetary Science Letters 44:119–138.
    OpenUrlCrossRefWeb of Science
    1. Tatsumoto M.
    (1978) Isotopic composition of lead in oceanic basalts and its implication to mantle evolution. Earth and Planetary Science Letters 38:119–138.
    OpenUrl
    1. Taylor S. R.,
    2. McLennan S. M.
    (1985) The Continental Crust: Its Composition and Evolution (Blackwells Scientific, Oxford). 312.
    1. Thompson R. N.,
    2. Morrison M. A.,
    3. Dickin A. P.,
    4. Hendry G. L.
    (1983) in Coninental Basalts and Mantle Xenoliths, Continental flood basalts… Arachnids rule OK? eds Hawkesworth C. J., Norry M. J. (Shiva, Cheshire), pp 158–185.
    1. Thompson R. N.,
    2. Morrison M. A.,
    3. Hendry G. L.,
    4. Parry S. J.
    (1984) An assessment of the relative roles of crust and mantle in magma genesis: and elemental approach. Philosophical Transactions of the Royal Society of London 310:549–590.
    OpenUrlCrossRef
    1. Vidal P.,
    2. Dosso L.
    (1978) Core formation: catastrophic or continuous? Sr and Pb isotope geochemistry constraints. Geophysical Research Letters 5:169–172.
    OpenUrlWeb of Science
    1. Vidal P.,
    2. Chauvel C.,
    3. Brousse R.
    (1984) Large mantle heterogeneity beneath French Polynesia. Nature 307:536–538.
    OpenUrlCrossRefWeb of Science
    1. Watson E. B.,
    2. Ben Othman D.,
    3. Luck J. M.,
    4. Hofmann A. W.
    (1987) Partitioning of U, Pb, Hf, Yb, Cs, Re, Os between chromian diopsidic pyroxene and haplobasaltic liquid. Chemical Geology 62:191–208.
    OpenUrlCrossRefWeb of Science
    1. Weaver B. L.,
    2. Wood D. A.,
    3. Tarney J.,
    4. Joron J. L.
    (1986) Role of subducted sediment in the genesis of ocean-island basalts: geochemical evidence from South Atlantic Ocean islands. Geology 14:275–278.
    OpenUrlAbstract/FREE Full Text
    1. White W. M.
    (1985) Sources of oceanic basalts: radiogenic isotopic evidence. Geology 13:115–118.
    OpenUrlAbstract/FREE Full Text
    1. White W. M.,
    2. Hofmann A. W.
    (1982) Sr and Nd isotope geochemistry of oceanic basalts and mantle evolution. Nature 296:821–825.
    OpenUrlCrossRefWeb of Science
    1. White W. M.,
    2. Hofmann A. W.,
    3. Puchelt H.
    (1987) Isotope geochemistry of Pacific mid-ocean ridge basalts. Journal of Geophysical Research 92:4881–4893.
    OpenUrlCrossRefWeb of Science
    1. White W. H.,
    2. Tapia M. D. M.,
    3. Schilling J.-G.
    (1979) The petrology and geochemistry of the Azores Islands. Contributions to Mineralogy and Petrology 69:201–213.
    OpenUrlCrossRefWeb of Science
    1. Wood D. A.,
    2. Joron J.-L.,
    3. Treuil M.,
    4. Norry M.,
    5. Tarney J.
    (1979) Elemental and Sr isotope variations in basic lavas from Iceland and the surrounding ocean floor. Contributions to Mineralogy and Petrology 70:319–339.
    OpenUrlCrossRefWeb of Science
    1. Wright E.,
    2. White W. M.
    (1987) The origin of Samoa: new evidence from Sr, Nd, and Pb isotopes. Earth and Planetary Science Letters 81:151–162.
    OpenUrlCrossRefWeb of Science
    1. Wyllie P. J.,
    2. Sekine T.
    (1982) The formation of mantle phlogopite in subduction zone hybridization. Contributions to Mineralogy and Petrology 79:375–380.
    OpenUrlCrossRefWeb of Science
    1. Zartman R. E.,
    2. Doe B. R.
    (1981) Plumbotectonics — the model. Tectonophysics 75:135–162.
    OpenUrlCrossRefWeb of Science
    1. Zindler A.,
    2. Hart S.
    (1986) Chemical geodynamics. Annual Reviews of Earth and Planetary Science 14:493–571.
    OpenUrlCrossRef
    1. Zindler A.,
    2. Jagoutz E.,
    3. Goldstein S.
    (1982) Nd, Sr and Pb isotopic systematics in a three-component mantle: a new perspective. Nature 298:519–523.
    OpenUrlCrossRef
    1. Zindler A.,
    2. Staudigel H.,
    3. Batiza R.
    (1984) Isotope and trace element geochemistry of young Pacific seamounts: implications for the scale of upper mantle heterogeneity. Earth and Planetary Science Letters 70:175–195.
    OpenUrlCrossRefWeb of Science
PreviousNext
Back to top

In this volume

Geological Society, London, Special Publications: 42 (1)
Geological Society, London, Special Publications
Volume 42
1989
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Front Matter (PDF)
Alerts
Sign In to Email Alerts with your Email Address
Citation tools

Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes

S.-s. Sun and W. F. McDonough
Geological Society, London, Special Publications, 42, 313-345, 1 January 1989, https://doi.org/10.1144/GSL.SP.1989.042.01.19
S.-s. Sun
Division of Petrology and Geochemistry, Bureau of Mineral Resources, Geology and Geophysics G.P.O. Box 378, Canberra, ACT 2601
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
W. F. McDonough
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Permissions
View PDF
Share

Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes

S.-s. Sun and W. F. McDonough
Geological Society, London, Special Publications, 42, 313-345, 1 January 1989, https://doi.org/10.1144/GSL.SP.1989.042.01.19
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Email to

Thank you for sharing this Geological Society, London, Special Publications article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes
(Your Name) has forwarded a page to you from Geological Society, London, Special Publications
(Your Name) thought you would be interested in this article in Geological Society, London, Special Publications.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
  • Tweet Widget
  • Facebook Like
  • Google Plus One
  • Article
  • Info & Metrics
  • PDF

Related Articles

Similar Articles

Cited By...

  • Most read
  • Most cited
Loading
  • The history of the European oil and gas industry (1600s–2000s)
  • Introduction to Himalayan tectonics: a modern synthesis
  • Fifty years of the Wilson Cycle concept in plate tectonics: an overview
  • Himalayan earthquakes: a review of historical seismicity and early 21st century slip potential
  • Fundamental controls on fluid flow in carbonates: current workflows to emerging technologies
More...

Special Publications

  • About the series
  • Books Editorial Committee
  • Submit a book proposal
  • Author information
  • Supplementary Publications
  • Subscribe
  • Pay per view
  • Alerts & RSS
  • Copyright & Permissions
  • Activate Online Subscription
  • Feedback
  • Help

Lyell Collection

  • About the Lyell Collection
  • Lyell Collection homepage
  • Collections
  • Open Access Collection
  • Open Access Policy
  • Lyell Collection access help
  • Recommend to your Library
  • Lyell Collection Sponsors
  • MARC records
  • Digital preservation
  • Developing countries
  • Geofacets
  • Manage your account
  • Cookies

The Geological Society

  • About the Society
  • Join the Society
  • Benefits for Members
  • Online Bookshop
  • Publishing policies
  • Awards, Grants & Bursaries
  • Education & Careers
  • Events
  • Geoscientist Online
  • Library & Information Services
  • Policy & Media
  • Society blog
  • Contact the Society

Published by The Geological Society of London, registered charity number 210161

Print ISSN 
0305-8719
Online ISSN 
2041-4927

Copyright © 2021 Geological Society of London