Skip to main content

Main menu

  • Home
    • Series home
    • Lyell Collection home
    • Geological Society home
  • Content
    • Online First
    • Current volume
    • All volumes
    • Collections
    • Supplementary publications
    • Open Access
  • Subscribe
    • GSL fellows
    • Institutions
    • Corporate
    • Other member types
  • Info
    • Authors
    • Librarians
    • Readers
    • Access for GSL Fellows
    • Access for other member types
    • Press office
    • Accessibility
    • Help
  • Alert sign up
    • eTOC alerts
    • Online First alerts
    • RSS feeds
    • Newsletters
    • GSL blog
  • Propose
  • Geological Society of London Publications
    • Engineering Geology Special Publications
    • Geochemistry: Exploration, Environment, Analysis
    • Journal of Micropalaeontology
    • Journal of the Geological Society
    • Lyell Collection home
    • Memoirs
    • Petroleum Geology Conference Series
    • Petroleum Geoscience
    • Proceedings of the Yorkshire Geological Society
    • Quarterly Journal of Engineering Geology and Hydrogeology
    • Quarterly Journal of the Geological Society
    • Scottish Journal of Geology
    • Special Publications
    • Transactions of the Edinburgh Geological Society
    • Transactions of the Geological Society of Glasgow
    • Transactions of the Geological Society of London

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Geological Society, London, Special Publications
  • Geological Society of London Publications
    • Engineering Geology Special Publications
    • Geochemistry: Exploration, Environment, Analysis
    • Journal of Micropalaeontology
    • Journal of the Geological Society
    • Lyell Collection home
    • Memoirs
    • Petroleum Geology Conference Series
    • Petroleum Geoscience
    • Proceedings of the Yorkshire Geological Society
    • Quarterly Journal of Engineering Geology and Hydrogeology
    • Quarterly Journal of the Geological Society
    • Scottish Journal of Geology
    • Special Publications
    • Transactions of the Edinburgh Geological Society
    • Transactions of the Geological Society of Glasgow
    • Transactions of the Geological Society of London
  • My alerts
  • Log in
  • My Cart
  • Follow gsl on Twitter
  • Visit gsl on Facebook
  • Visit gsl on Youtube
  • Visit gsl on Linkedin
Geological Society, London, Special Publications

Advanced search

  • Home
    • Series home
    • Lyell Collection home
    • Geological Society home
  • Content
    • Online First
    • Current volume
    • All volumes
    • Collections
    • Supplementary publications
    • Open Access
  • Subscribe
    • GSL fellows
    • Institutions
    • Corporate
    • Other member types
  • Info
    • Authors
    • Librarians
    • Readers
    • Access for GSL Fellows
    • Access for other member types
    • Press office
    • Accessibility
    • Help
  • Alert sign up
    • eTOC alerts
    • Online First alerts
    • RSS feeds
    • Newsletters
    • GSL blog
  • Propose

Scaling laws for aggradation, denudation and progradation rates: the case for time-scale invariance at sediment sources and sinks

Peter M. Sadler and Douglas J. Jerolmack
Geological Society, London, Special Publications, 404, 69-88, 11 April 2014, https://doi.org/10.1144/SP404.7
Peter M. Sadler
1Department of Earth Science, University of California, Riverside, CA 92521, USA
  • Find this author on Google Scholar
  • Search for this author on this site
  • For correspondence: peter.sadler@ucr.edu
Douglas J. Jerolmack
2Department of Earth and Environmental Science, University of Pennsylvania, 240 S. 33rd Street, Hayden Hall, Philadelphia, PA 19104-6316, USA
  • Find this author on Google Scholar
  • Search for this author on this site
PreviousNext
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Abstract

Linear rates of sediment aggradation and fluvial incision are inverse functions of measurement interval, a generic consequence of unsteadiness in the underlying processes. This effect results from a one-dimensional approach–that is, vertical rates determined at a single location–and significantly complicates comparisons of rates at different timescales. Mass conservation imposes an important but underutilized constraint; sediment by-passing or eroded from one location must deposit somewhere else. Over the long term, sediment generation and deposition must balance. In principle, the effects of unsteadiness could be eliminated if the total volume of sediment eroded or deposited over different intervals could be measured. In practice, however, obtaining such three-dimensional data from an individual site is virtually impossible. Here, we advance from one- to two-dimensional rate data. We present two new global compilations of data: denudation rates of fluvial uplands; and lateral migration (progradation) rates of siliciclastic lowland and marine systems, from ripple to shelf-slope scale. Important new findings are: (1) upland denudation rates determined from specific sediment yield show little or no dependence of rate on time interval; (2) in the transfer zone between sediment source and sink, rates of erosion and deposition balance over all scales; and (3) progradation mirrors aggradation over all timescales. The product of progradation and aggradation is independent of timescale, implying that global sediment flux into the world’s oceans has been constant on the order of 100 m2/yr, from scales of months to tens of millions of years. Results show that global rates of denudation and accumulation are time invariant with appropriate spatial averaging; however, site-specific application remains a daunting challenge.

  • © 2015 The Geological Society of London
View Full Text

Please note that if you are logged into the Lyell Collection and attempt to access content that is outside of your subscription entitlement you will be presented with a new login screen. You have the option to pay to view this content if you choose. Please see the relevant links below for further assistance.

INDIVIDUALS

Log in using your username and password

– GSL fellows: log in with your Lyell username and password. (Please check your access entitlements at https://www.geolsoc.org.uk/fellowsaccess)
– Other users: log in with the username and password you created when you registered. Help for other users is at https://www.geolsoc.org.uk/lyellcollection_faqs
Forgot your username or password?

Purchase access

You may purchase access to this article for 24 hours and download the PDF within the access period. This will require you to create an account if you don't already have one. To download the PDF, click the 'Purchased Content' link in the receipt email.

LIBRARY USERS

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.
If your organization uses OpenAthens, you can log in using your OpenAthens username and password. To check if your institution is supported, please see this list. Contact your library for more details.
If you think you should have access, please contact your librarian or email sales@geolsoc.org.uk

LIBRARIANS

Administer your subscription.

CONTACT US

If you have any questions about the Lyell Collection publications website, please see the access help page or contact sales@geolsoc.org.uk

PreviousNext
Back to top

In this volume

Geological Society, London, Special Publications: 404 (1)
Geological Society, London, Special Publications
Volume 404
2015
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Front Matter (PDF)
Alerts
Sign In to Email Alerts with your Email Address
Citation tools

Scaling laws for aggradation, denudation and progradation rates: the case for time-scale invariance at sediment sources and sinks

Peter M. Sadler and Douglas J. Jerolmack
Geological Society, London, Special Publications, 404, 69-88, 11 April 2014, https://doi.org/10.1144/SP404.7
Peter M. Sadler
1Department of Earth Science, University of California, Riverside, CA 92521, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: peter.sadler@ucr.edu
Douglas J. Jerolmack
2Department of Earth and Environmental Science, University of Pennsylvania, 240 S. 33rd Street, Hayden Hall, Philadelphia, PA 19104-6316, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Permissions
View PDF
Share

Scaling laws for aggradation, denudation and progradation rates: the case for time-scale invariance at sediment sources and sinks

Peter M. Sadler and Douglas J. Jerolmack
Geological Society, London, Special Publications, 404, 69-88, 11 April 2014, https://doi.org/10.1144/SP404.7
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Email to

Thank you for sharing this Geological Society, London, Special Publications article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Scaling laws for aggradation, denudation and progradation rates: the case for time-scale invariance at sediment sources and sinks
(Your Name) has forwarded a page to you from Geological Society, London, Special Publications
(Your Name) thought you would be interested in this article in Geological Society, London, Special Publications.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
Download PPT
  • Tweet Widget
  • Facebook Like
  • Google Plus One
  • Article
    • Abstract
    • An apparent paradox
    • A proposed resolution
    • Theoretical foundation
    • Units and scope of empirical rate measurements
    • Graphical representation
    • Empirical database
    • Timescale dependence of sediment aggradation rates
    • Erosion rates
    • Sediment yield as an estimator of denudation rate
    • Timescale dependence of sediment progradation
    • Time-scale independence of sediment flux
    • A note about immeasurably slow rates
    • Conclusion
    • Acknowledgments
    • References
  • Figures & Data
  • Info & Metrics
  • PDF

Related Articles

Similar Articles

Cited By...

  • Most read
  • Most cited
Loading
  • The history of the European oil and gas industry (1600s–2000s)
  • Introduction to Himalayan tectonics: a modern synthesis
  • Contributions to the history of geomorphology and Quaternary geology: an introduction
  • Fifty years of the Wilson Cycle concept in plate tectonics: an overview
  • Himalayan earthquakes: a review of historical seismicity and early 21st century slip potential
More...

Special Publications

  • About the series
  • Books Editorial Committee
  • Submit a book proposal
  • Author information
  • Supplementary Publications
  • Subscribe
  • Pay per view
  • Alerts & RSS
  • Copyright & Permissions
  • Activate Online Subscription
  • Feedback
  • Help

Lyell Collection

  • About the Lyell Collection
  • Lyell Collection homepage
  • Collections
  • Open Access Collection
  • Open Access Policy
  • Lyell Collection access help
  • Recommend to your Library
  • Lyell Collection Sponsors
  • MARC records
  • Digital preservation
  • Developing countries
  • Geofacets
  • Manage your account
  • Cookies

The Geological Society

  • About the Society
  • Join the Society
  • Benefits for Members
  • Online Bookshop
  • Publishing policies
  • Awards, Grants & Bursaries
  • Education & Careers
  • Events
  • Geoscientist Online
  • Library & Information Services
  • Policy & Media
  • Society blog
  • Contact the Society

Published by The Geological Society of London, registered charity number 210161

Print ISSN 
0305-8719
Online ISSN 
2041-4927

Copyright © 2021 Geological Society of London