Abstract
Understanding how shallow reservoirs store and redirect magma is critical for deciphering the relationship between surface and subsurface volcanic activity on the terrestrial planets. Complementing field, laboratory and remote sensing analyses, elastic models provide key insights into the mechanics of magma reservoir inflation and rupture, and hence into commonly observed volcanic phenomena including edifice growth, circumferential intrusion, radial dyke swarm emplacement and caldera formation. Based on finite element model results, the interplay between volcanic elements – such as magma reservoir geometry, host rock environment (with an emphasis on understanding how host rock pore pressure assumptions affect model predictions), mechanical layering, and edifice loading with and without flexure – dictates the overpressure required for rupture, the location and orientation of initial fracturing and intrusion, and the associated surface uplift. Model results are either insensitive to, or can readily incorporate, material and parameter variations characterizing different planetary environments, and they also compare favourably with predictions derived from rheologically complex, time-dependent formulations for a surprisingly diverse array of volcanic scenarios. These characteristics indicate that elastic models are a powerful and useful tool for exploring many fundamental questions in planetary volcanology.
- © The Geological Society of London 2015
Please note that if you are logged into the Lyell Collection and attempt to access content that is outside of your subscription entitlement you will be presented with a new login screen. You have the option to pay to view this content if you choose. Please see the relevant links below for further assistance.