Skip to main content

Main menu

  • Home
    • Series home
    • Lyell Collection home
    • Geological Society home
  • Content
    • Online First
    • Current volume
    • All volumes
    • All collections
    • Supplementary publications
    • Open Access
  • Subscribe
    • GSL fellows
    • Institutions
    • Corporate
    • Other member types
  • Info
    • Authors
    • Librarians
    • Readers
    • Access for GSL Fellows
    • Access for other member types
    • Press office
    • Accessibility
    • Help
  • Alert sign up
    • RSS feeds
    • Newsletters
  • Propose
  • Geological Society of London Publications
    • Engineering Geology Special Publications
    • Geochemistry: Exploration, Environment, Analysis
    • Journal of Micropalaeontology
    • Journal of the Geological Society
    • Lyell Collection home
    • Memoirs
    • Petroleum Geology Conference Series
    • Petroleum Geoscience
    • Proceedings of the Yorkshire Geological Society
    • Quarterly Journal of Engineering Geology and Hydrogeology
    • Quarterly Journal of the Geological Society
    • Scottish Journal of Geology
    • Special Publications
    • Transactions of the Edinburgh Geological Society
    • Transactions of the Geological Society of Glasgow
    • Transactions of the Geological Society of London

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Geological Society, London, Special Publications
  • Geological Society of London Publications
    • Engineering Geology Special Publications
    • Geochemistry: Exploration, Environment, Analysis
    • Journal of Micropalaeontology
    • Journal of the Geological Society
    • Lyell Collection home
    • Memoirs
    • Petroleum Geology Conference Series
    • Petroleum Geoscience
    • Proceedings of the Yorkshire Geological Society
    • Quarterly Journal of Engineering Geology and Hydrogeology
    • Quarterly Journal of the Geological Society
    • Scottish Journal of Geology
    • Special Publications
    • Transactions of the Edinburgh Geological Society
    • Transactions of the Geological Society of Glasgow
    • Transactions of the Geological Society of London
  • My alerts
  • Log in
  • My Cart
  • Follow gsl on Twitter
  • Visit gsl on Facebook
  • Visit gsl on Youtube
  • Visit gsl on Linkedin
Geological Society, London, Special Publications

Advanced search

  • Home
    • Series home
    • Lyell Collection home
    • Geological Society home
  • Content
    • Online First
    • Current volume
    • All volumes
    • All collections
    • Supplementary publications
    • Open Access
  • Subscribe
    • GSL fellows
    • Institutions
    • Corporate
    • Other member types
  • Info
    • Authors
    • Librarians
    • Readers
    • Access for GSL Fellows
    • Access for other member types
    • Press office
    • Accessibility
    • Help
  • Alert sign up
    • RSS feeds
    • Newsletters
  • Propose

Numerical modelling of spontaneous slab breakoff dynamics during continental collision

Cyrill Baumann, Taras V. Gerya and James A. D. Connolly
Geological Society, London, Special Publications, 332, 99-114, 1 January 2010, https://doi.org/10.1144/SP332.7
Cyrill Baumann
1Department of Geosciences, Swiss Federal Institute of Technology (ETH-Zurich), CH-8092 Zurich, Switzerland
  • Find this author on Google Scholar
  • Search for this author on this site
  • For correspondence: [email protected]
Taras V. Gerya
1Department of Geosciences, Swiss Federal Institute of Technology (ETH-Zurich), CH-8092 Zurich, Switzerland
2Geology Department, Moscow State University, 119899 Moscow, Russia
  • Find this author on Google Scholar
  • Search for this author on this site
James A. D. Connolly
1Department of Geosciences, Swiss Federal Institute of Technology (ETH-Zurich), CH-8092 Zurich, Switzerland
  • Find this author on Google Scholar
  • Search for this author on this site
PreviousNext
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Abstract

Slab detachment or breakoff is directly associated with phenomena like morphological orogenesis, occurrence of earthquakes and magmatism. At depth the detachment process is slow and characterized by viscous rheolgy, whereas closer to the surface the process is relatively fast and plastic. Using a 2D mantle model 1500 km deep and 4000 km wide we investigated, with finite-difference and marker-in-cell numerical techniques, the impact of slab age, convergence rate and phase transitions on the viscous mode of slab detachment. In contrast to previous studies exploring simplified breakoff models in which the blockage responsible for inducing breakoff is kinematically prescribed, we constructed a fully dynamic coupled petrological–thermomechanical model of viscous slab breakoff. In this model, forced subduction of a 700 km-long oceanic plate was followed by collision of two continental plates and spontaneous slab blocking resulting from the buoyancy of the continental crust once it had been subducted to a depth of 100–124 km. Typically, five phases of model development can be distinguished: (a) oceanic slab subduction and bending; (b) continental collision initiation followed by the spontaneous slab blocking, thermal relaxation and unbending – in experiments with old oceanic plates in this phase slab roll-back occurs; (c) slab stretching and necking; (d) slab breakoff and accelerated sinking; and (e) post-breakoff relaxation.

Our experiments confirm a correlation between slab age and the time of spontaneous viscous breakoff as previously identified in simplified breakoff models. The results also demonstrate a non-linear dependence of the duration of the breakoff event on slab age: a positive correlation being characteristic of young (<50 Ma) slabs while for older slabs the correlation is negative. The increasing duration of the breakoff with slab age in young slabs is attributed to the slab thermal thickness, which increases both the slab thermal relaxation time and duration of the necking process. In older slabs this tendency is counteracted by negative slab buoyancy, which generate higher stresses that facilitate slab necking and breakoff. A prediction from our breakoff models is that the olivine–wadsleyite transition plays an important role in localizing viscous slab breakoff at depths of 410–510 km due to the buoyancy effects of the transition.

  • © The Geological Society of London 2010
View Full Text

Please note that if you are logged into the Lyell Collection and attempt to access content that is outside of your subscription entitlement you will be presented with a new login screen. You have the option to pay to view this content if you choose. Please see the relevant links below for further assistance.

INDIVIDUALS

Log in using your username and password

– GSL fellows: log in with your Lyell username and password. (Please check your access entitlements at https://www.geolsoc.org.uk/fellowsaccess)
– Other users: log in with the username and password you created when you registered. Help for other users is at https://www.geolsoc.org.uk/lyellcollection_faqs
Forgot your username or password?

Purchase access

You may purchase access to this article for 24 hours and download the PDF within the access period. This will require you to create an account if you don't already have one. To download the PDF, click the 'Purchased Content' link in the receipt email.

LIBRARY USERS

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.
If your organization uses OpenAthens, you can log in using your OpenAthens username and password. To check if your institution is supported, please see this list. Contact your library for more details.
If you think you should have access, please contact your librarian or email [email protected]

LIBRARIANS

Administer your subscription.

CONTACT US

If you have any questions about the Lyell Collection publications website, please see the access help page or contact [email protected]

PreviousNext
Back to top

In this volume

Geological Society, London, Special Publications: 332 (1)
Geological Society, London, Special Publications
Volume 332
2010
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Front Matter (PDF)
Alerts
Sign In to Email Alerts with your Email Address
Citation tools

Numerical modelling of spontaneous slab breakoff dynamics during continental collision

Cyrill Baumann, Taras V. Gerya and James A. D. Connolly
Geological Society, London, Special Publications, 332, 99-114, 1 January 2010, https://doi.org/10.1144/SP332.7
Cyrill Baumann
1Department of Geosciences, Swiss Federal Institute of Technology (ETH-Zurich), CH-8092 Zurich, Switzerland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
Taras V. Gerya
1Department of Geosciences, Swiss Federal Institute of Technology (ETH-Zurich), CH-8092 Zurich, Switzerland
2Geology Department, Moscow State University, 119899 Moscow, Russia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
James A. D. Connolly
1Department of Geosciences, Swiss Federal Institute of Technology (ETH-Zurich), CH-8092 Zurich, Switzerland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Permissions
View PDF
Share

Numerical modelling of spontaneous slab breakoff dynamics during continental collision

Cyrill Baumann, Taras V. Gerya and James A. D. Connolly
Geological Society, London, Special Publications, 332, 99-114, 1 January 2010, https://doi.org/10.1144/SP332.7
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Email to

Thank you for sharing this Geological Society, London, Special Publications article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Numerical modelling of spontaneous slab breakoff dynamics during continental collision
(Your Name) has forwarded a page to you from Geological Society, London, Special Publications
(Your Name) thought you would be interested in this article in Geological Society, London, Special Publications.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
Download PPT
Bookmark this article
  • Tweet Widget
  • Facebook Like
  • Google Plus One
  • Article
    • Abstract
    • Model set-up and governing equations
    • Modelling results
    • Discussion and conclusions
    • Acknowledgments
    • References
  • Figures & Data
  • Info & Metrics
  • PDF

Related Articles

Similar Articles

Cited By...

  • Most read
  • Most cited
Loading
  • The history of the European oil and gas industry (1600s–2000s)
  • Himalayan earthquakes: a review of historical seismicity and early 21st century slip potential
  • Introduction to Himalayan tectonics: a modern synthesis
  • Seismic characterization of carbonate platforms and reservoirs: an introduction and review
  • An introduction to forensic soil science and forensic geology: a synthesis
More...

Special Publications

  • About the series
  • Books Editorial Committee
  • Submit a book proposal
  • Author information
  • Supplementary Publications
  • Subscribe
  • Pay per view
  • Copyright & Permissions
  • Activate Online Subscription
  • Feedback
  • Help

Lyell Collection

  • About the Lyell Collection
  • Lyell Collection homepage
  • Collections
  • Open Access Collection
  • Open Access Policy
  • Lyell Collection access help
  • Recommend to your Library
  • Lyell Collection Sponsors
  • MARC records
  • Digital preservation
  • Developing countries
  • Geofacets
  • Manage your account
  • Cookies

The Geological Society

  • About the Society
  • Join the Society
  • Benefits for Members
  • Online Bookshop
  • Publishing policies
  • Awards, Grants & Bursaries
  • Education & Careers
  • Events
  • Geoscientist Online
  • Library & Information Services
  • Policy & Media
  • Society blog
  • Contact the Society

Published by The Geological Society of London, registered charity number 210161

Print ISSN 
0305-8719
Online ISSN 
2041-4927

Copyright © 2022 Geological Society of London