Abstract
The growth of shallow sills is studied in analogue experiments performed in polymethyl methacrylate (PMMA) and glass. The experimental fractures curve towards the surface to become saucer-shaped, which is consistent with many field observations of dolerite sills. The curvature of the saucer is shown to decrease as the in situ stress acting parallel to the surface increases relative to an estimate of the strength of the fracture-induced stress field. The initially circular fractures also elongate in plan view to become egg-shaped, a tendency that decreases with increasing importance of viscous dissipation in the growth process. Sill emplacement is further examined mathematically by considering a shallow, circular, fluid-driven fracture propagating in a homogeneous brittle elastic material. The fractures are shown to undergo three transitions related to the mechanics of sill growth. Each transition is associated with a characteristic time that is derived from analysis of the governing equations using scaling methods. These characteristic times provide an estimate of how long viscous flow is the dominant energy dissipation mechanism, how long significant lag between the fluid and fracture fronts is expected to persist, and how long the sill will take to attain an extent that is of the same order as its depth.
- © The Geological Society of London 2008
Please note that if you are logged into the Lyell Collection and attempt to access content that is outside of your subscription entitlement you will be presented with a new login screen. You have the option to pay to view this content if you choose. Please see the relevant links below for further assistance.