Abstract
Decompaction routines are used in basin modelling packages to calculate sediment thickness and material properties such as thermal conductivity. However, compaction in nature is dependent on initial porosity, composition, and effective stress, and a considerable range of porosity-depth trends exists. Simple thermal modelling demonstrates that significant uncertainties (up to VRE ± 0.5) arise in predicted maturities due to this variation. Furthermore, the validity of using porosity loss as a measure of compaction is questionable because changes in solid volume can occur. Chemical reaction may increase or decrease porosity without changing sediment thickness, although an apparently smooth transition occurs from dominantly mechanical processes of porosity loss (e.g. grain rearrangement) at shallow levels to dominantly chemical processes (e.g. grain dissolution/cementation) at depth. That compaction and porosity loss are processes dependent upon effective stress, time and temperature is illustrated by the observation of overpressuring in the subsurface, comparison of experimental and natural compaction rates and analysis of porosity-depth trends for sediments of different ages. Mechanistic models of the processes involved in compaction (e.g. pressure solution) also indicate time dependency. Time-dependent models of compaction can be constructed, but these are difficult to incorporate into basin models as they cannot be run in a simple backstripping mode.
- © The Geological Society 1998
Abstract
Decompaction routines are used in basin modelling packages to calculate sediment thickness and material properties such as thermal conductivity. However, compaction in nature is dependent on initial porosity, composition, and effective stress, and a considerable range of porosity-depth trends exists. Simple thermal modelling demonstrates that significant uncertainties (up to VRE ± 0.5) arise in predicted maturities due to this variation. Furthermore, the validity of using porosity loss as a measure of compaction is questionable because changes in solid volume can occur. Chemical reaction may increase or decrease porosity without changing sediment thickness, although an apparently smooth transition occurs from dominantly mechanical processes of porosity loss (e.g. grain rearrangement) at shallow levels to dominantly chemical processes (e.g. grain dissolution/cementation) at depth. That compaction and porosity loss are processes dependent upon effective stress, time and temperature is illustrated by the observation of overpressuring in the subsurface, comparison of experimental and natural compaction rates and analysis of porosity-depth trends for sediments of different ages. Mechanistic models of the processes involved in compaction (e.g. pressure solution) also indicate time dependency. Time-dependent models of compaction can be constructed, but these are difficult to incorporate into basin models as they cannot be run in a simple backstripping mode.
- © The Geological Society 1998
Please note that if you are logged into the Lyell Collection and attempt to access content that is outside of your subscription entitlement you will be presented with a new login screen. You have the option to pay to view this content if you choose. Please see the relevant links below for further assistance.