






North Arm of Sulawesi, and is traced westwards to
where it joins the active north–south Palu-Koro
fault zone. Unlike many trenches, it is not a linear
feature significantly deeper than the ocean floor
being subducted. The trench has a similar depth
(c. 5400 m) to the Celebes Sea to the north (c. 5500
m) (Fig. 11b). It has a similar depth from its eastern
end to 120.7° E, where it becomes shallower over
a short distance until it joins the Palu-Koro fault at
c. 5000 m. The depth of the Celebes Sea is greatest
in a triangular area north of the trench and this trian-
gle is widest at its centre, north of the point at which
the subducted slab reaches its greatest depth. Like
the West Philippine Sea, the Celebes Sea is c. 1000
m deeper than predicted by the age–depth curves for
the major oceans.

The trench has been interpreted as the result of a
clockwise block rotation of the North Arm about a
pole at the east end of the trench (Hamilton 1979;
Silver et al. 1983). The rotation of a rigid block
has been supported by global positioning system
observations, measurements of rates of movement

on the Palu-Koro fault (e.g. Walpersdorf et al.
1998; Stevens et al. 1999; Bellier et al. 2001; Soc-
quet et al. 2006) and by palaeomagnetic results
showing young clockwise rotations of the North
Arm (Surmont et al. 1994).

Recent observations and newer data complicate
this apparently simple picture, however. If there had
been a block rotation about a pole near the east end
of the North Arm, then the length of the subducted
slab should increase westwards and reach a maxi-
mum at the Palu-Koro fault. This is not observed.
Seismicity shows that the maximum depth reached
by the slab (c. 260 km) is in the centre of the sub-
duction zone and the poorly defined slab at the west-
ern end has no significant seismicity deeper than
c. 100 km (Fig. 11c). The palaeomagnetic results
(Surmont et al. 1994) are also ambiguous. There is
evidence for Miocene or younger clockwise rota-
tions, but these are only recorded from a small area
in the centre of the North Arm where rotations
range from 8 to 21°. Other sites are poorly
constrained for rotation age or have variable

Fig. 11. North and East Sulawesi and the North Sulawesi trench. (a) Digital elevation model of the region from
satellite gravity-derived bathymetry combined with Shuttle Radar Topographic Mission topography (Sandwell &
Smith 2009) merged with multibeam bathymetry of the North Sulawesi trench and Gorontalo Bay. (b) Principal
structural features. (c) Major faults, interpreted Benioff zone contours and estimated area of subducted slab restored to
the surface in pale green. (d) Major faults and sediment thicknesses of the three major Miocene–Recent depocentres
and major metamorphic complexes around Gorontalo Bay.
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inclinations, suggesting displacements that are more
complex than simple vertical axis rotations.

There is now also evidence for other NNW–SSE-
trending major faults in addition to the Palu-Koro
fault (Fig. 11c). The Tambarana fault is a major
fault zone sub-parallel to, and east of, the Palu-
Koro fault on which there is several kilometres of
vertical displacement (Fig. 11d), as well as signifi-
cant inferred strike-slip displacement, probably of
Plio-Pleistocene age. Still further east are zones of
faulting crossing the North Arm west and east of
the Malino metamorphic complex, which was
exhumed in the Pliocene (Advokaat et al. 2017),
named here the Malino fault and the Buol fault
(Fig. 11c). The latter zone of faulting appears to
pass through the Togian Islands and can be traced
into the eastern end of the East Arm. All of these
are actually fault zones up to 20 km wide with
several strands.

The area of Gorontalo Bay, south of the North
Arm, was almost unexplored until recently, when
seismic and multibeam data were acquired. It is
now known that there are three major depocentres,
each containing several kilometres of Miocene to
Recent sediments (Fig. 11d). In the northern part of
western Gorontalo Bay is the Tomini basin, with
>5 km of sediment. At the centre of the basin water
depths reach 2 km and north of this there are arcuate
pinnacle reef lineaments indicating rapid subsidence
and a northwards back-stepping of the shelf edge
(Fig. 11a), interpreted to have occurred in the last
2–3 myr (Pholbud et al. 2012; Pezzati et al. 2014;
Pezzati 2017). The Lalanga Ridge (Pholbud et al.
2012) in the SW part of the bay has large reef com-
plexes, now at depths between 1.5 and 0.5 km. South
of this ridge is the Poso sub-basin with >3 km of
Upper Miocene to Recent sediments and water
depths of 1.8 km (Pezzati et al. 2014). In the eastern
part of Gorontalo Bay, between the North Arm and
the Togian Islands, is the Tilamuta basin
(Fig. 11d), also with water depths >2 km and > km
of sediment (Rudyawan 2016).

There was a significant phase of acid and interme-
diate magmatism in the North Arm that began at
c. 9 Ma and continued into the Pliocene (Advokaat
et al. 2014; Advokaat 2016; Rudyawan et al. 2014;
Rudyawan 2016). This phase probably provided vol-
canogenic material that contributed mostly to the
deep Tilamuta basin. There was further acid magma-
tism in the North Arm, Neck and Central Sulawesi
SW of the Poso basin in the Late Miocene and Plio-
cene, recorded by widespread acid tuffs and granites.
Rhyolitic tuffs were reworked in a marine setting at
c. 4 Ma and dacites of c. 2 Ma age which intrude
them are now exposed in the Togian Islands (Cottam
et al. 2011). Similar igneous rocks are found to the
west in the volcano of Una-Una, which last erupted
explosively in 1983 (Katili & Sudradjat 1984).

North of Gorontalo Bay in the North Arm, in the
Neck to the west, and in Central Sulawesi to the
south are metamorphic complexes exhumed rapidly
since the Miocene. Lineations on the Tokorondo
and Pompangeo core complexes indicate that exhu-
mation occurred during extension parallel to the
NNW–SSE-trending major faults (Spencer 2010,
2011; Fig. 11a, d). Granites and metamorphic
rocks record Late Miocene and Pliocene magmatism
and metamorphism (Hennig 2015; Hennig et al.
2017). Granites at elevations of >500 m in the
Neck were exhumed rapidly from depths of at least
2 km between 3 and 2 Ma (Hennig et al. 2016) and
are now overlain by Quaternary alluvial fan con-
glomerates containing granite boulders passing up
into fluvial sediments, now dipping at up to 20°.

The pattern of faulting, the exhumation of meta-
morphic core complexes, magmatism, subsidence
and sedimentation in Gorontalo Bay (Pholbud
et al. 2012; Rudyawan et al. 2014; Advokaat 2016;
Hennig et al. 2016, 2017; Pezzati 2017) indicate a
link between extension and the subduction of the
Celebes Sea at the North Sulawesi trench, as previ-
ously suggested. However, the connection is not
simply a response to a rigid block rotation, as
explained earlier, and magmatism was not arc mag-
matism related to subduction. Acid and intermediate
magmatism in the North Arm occurred where, even
today, the slab is only 60 and 80 km deep. Una-Una
volcano and the youngmagmatic rocks in the Togian
Islands are south of the subducted slab and cannot be
related to subduction at the North Sulawesi trench
(Cottam et al. 2011).

For North Sulawesi, subduction is interpreted to
have initiated at a corner in the ocean basin inferred
from the shape of the subducted slab (Fig. 12). This
corner was south of the centre of the present trench.
Restoring the subducted slab to the surface (Figs 11c
& 12) indicates that subduction developed in a series
of stages. Loading of the ocean crust in the corner
depressed it and allowed the weak crust south of
the Celebes Sea to flow into this corner, further
depressing it. The western end of the trench moved
west in a series of stages. At each stage the trench
was linked to a strike-slip fault zone, which allowed
the clockwise rotation of segments of the upper crust.
These were the Buol fault zone, the Malino fault
zone, the Tambarana fault zone and the Palu-Koro
fault zone. The exact chronology of the development
of subduction is slightly uncertain for reasons dis-
cussed later, but a weak hot crust with the potential
addition of volcanic debris suggests that loading
began after magmatism in the North Arm and is sug-
gested to have started at c. 8 Ma. Very rapid exten-
sion, which caused major subsidence of Gorontalo
Bay, the exhumation and uplift of core complexes,
and contributed to the later phase of acid magmatism
probably began after 5 Ma and this most likely
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indicates that the slab was by then sufficiently deep
and dense to drive subduction rollback.

Philippine trench

The Philippine trench is longest and most obvious
trench of those discussed here. The trench is
1800 km long and follows the eastern coast of the
Philippine Islands at the edge of the Philippine Sea
plate (Fig. 1). As observed earlier, the Philippine
Sea basins are several hundred metres deeper for
their age than the major ocean basins. The trench is
exceptionally deep and reaches depths in its central
part, between 9 and 11° N and east of Mindanao,
up to 10 000 m (Fig. 13). The trench between 7
and 12° N is deeper than 9000 m. To the north and
south the trench depth decreases, so that close to
where the trench disappears as an obvious linear fea-
ture the depth is c. 5500 m. The trench terminates at
its southern end at c. 3° N (Nichols et al. 1990) and
in the north at c. 15° N.

Cardwell et al. (1980) showed only a 100 km
Benioff zone contour for the subducted Philippine
Sea plate, but commented on the steepness of the
slab dip compared with other subduction zones. Lal-
lemand et al. (1998) interpreted an additional
200 km contour through Mindanao, roughly along
the trace of the Philippine fault. Neither more recent
seismicity (Engdahl et al. 1998; USGS Earthquakes
Hazard Program 2017) nor P-wave tomography
(Hall & Spakman 2015) provide clearer images of
the subducting slab. Most volcanoes in eastern

Mindanao and the central Philippines are close to
the Philippine fault, but deviate from it in the north-
ern Philippines. It is not clear whether the volcanoes
are the product of melting above the subducted slab
or magmatism associated with the Philippine fault. If
the 200 km Benioff zone contour is in the position
drawn by Lallemand et al. (1998), then the source
of the magmas is rather deep, but the steepness of
the slab and the difficulty in accurately defining the
top of the slab means that this is uncertain. There
has also been abundant volcanic activity unrelated
to subduction in Mindanao, far to the west of any
influence from Philippine Sea plate subduction.
Sajona et al. (2000) suggested that this may be
related to older subduction and/or collision in
Mindanao.

The length of the subducted slab, between 100
and 200 km, appears similar along most of the length
of the Philippine trench (Fig. 13). Lallemand et al.
(1998) suggested that subduction initiated between
7 and 10° N, where the trench is deepest, and the

Fig. 13. The Philippine trench. Colour shading shows
the depth of the trench with numbers showing depth in
metres from Lallemand et al. (1998) for central and
southern parts of the trench and from Sandwell & Smith
(2009) for the northern part of the trench. Red-filled
triangles are volcanoes from the Smithsonian Institution
Global Volcanism Program (Siebert et al. 2010).

Fig. 12. Interpreted development of the North Sulawesi
trench. Black-filled circle marks the point of initiation
of subduction at the corner of Celebes Sea, formerly
north of the North Arm of Sulawesi. Present day
coastline shown for reference. Grey shading marks
inferred positions of active fault zones bounding the
west end of the trench at different stages. Yellow
shading marks present day positions of those fault
zones that are slightly offset due to the roughly east–
west extension that accompanied trench movement.
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trench grew northwards and southwards from there
in the past 5 myr. The similar length of the subducted
slab along the trench suggests that it grew rapidly to
the north and south from the point of initiation
which, assuming a simple linear propagation, corre-
sponds to a rate of 180 km myr along-strike.

Discussion

There can be no doubt that new subduction zones
have been created in many parts of the west Pacific
margins and eastern Indonesia in the Neogene. It is
also likely that they formed by different mechanisms.
To understand the processes that have led to the pre-
sent day tectonic situation, it is important to have an
accurate identification of the plate boundaries that
exist today. Unfortunately, this is often overlooked.
Maps such as those of Bird (2003), largely derived
from Rangin et al. (1999), based mainly on recent
seismicity and global positioning system measure-
ments, show a number of ‘microplates’ (Fig. 14a)
with fully connected plate boundaries – but this is
not the situation. Most ‘plate boundaries’ in the
region are not connected (Fig. 14b). Subduction
zones terminate. The wrongly interpreted complete
connection of plate boundaries implies the rapid
(almost instantaneous) creation of new plate bound-
aries, very small plates (some would be thicker than
they are laterally extensive at the surface) and the
propagation of trenches from another plate boun-
dary, or a change of a boundary type as motion direc-
tions changed. This is not what is observed. Today,

we observe a single frame in a kinematic sequence
of tectonic change and this implies considerable
‘intra-plate’ deformation. The Neogene history of
the Celebes Sea shows that new subduction zones
start at points and grow laterally – even today, the
North Sulawesi trench and the Cotobato trench are
not connected (Fig. 1).

This raises the important issue of how the initia-
tion of subduction can be recognized. The crucial
stage is getting the slab to the depth where slab-pull
forces can take over. How long does it take to
depress the top of the oceanic crust from the sea-
bed to depths of >50 km where, for example, the
increased density due to phase changes could
enhance slab-pull forces? Very few studies address
this issue – most models of the initiation of subduc-
tion simply show a new subduction zone that has
already reached a depth of 100 km.

What is used to recognize past subduction and
identify a new subduction zone? Typically, this is a
volcanic arc, but volcanism normally starts only
when a slab reaches c. 100 km. For a subduction
angle of 45° (140 km length subducted) and 7 cm
a−1 (the present convergence rate at the Java trench)
this would require 2 myr. An absolute minimum of
1 myr is required with an average dip to 100 km of
45° and a convergence rate of 14 cm a−1. In most
places around Indonesia, the slab dip to 100 km is
much less than 45°. Slab dips typically increase
below depths of 100 km. For North Sulawesi, the
horizontal distance from the trench to a point verti-
cally above the Benioff zone contour of 100 km is
c. 170–200 km and the slab dip is close to 30°. To

Fig. 14. Plate boundaries: imaginary and real. (a) Microplate boundaries traced by Bird (2003). (b) Actual
subduction zones in the region; double red line is spreading centre of the Ayu trough. For plate reconstructions of the
region, it is necessary to treat small areas as microplates, but it is important to understand that such reconstructions
are only approximations. Present day subduction zones are not linked and there is considerable intra-plate
deformation between them, some of which is captured for several short intervals by global positioning system
measurements and seismicity. Many of the faults used to bound blocks based on these observations are simply upper
crust faults or do not exist; they are not plate boundaries.
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create this configuration at a convergence rate of
7 cm a−1 would require c. 3 myr.

However, even using the arc as a marker is prob-
lematic because subduction-related volcanic activity
has not started above the slabs subducted at the North
Sulawesi trench or the Cotobato trench, and possibly
not at the Philippine trench. Most of the volcanic
activity in the south and central Philippines west of
the Philippine trench appears likely to be related to
the Philippine fault (Fig. 13).

There are several important features that are cru-
cial to the initiation of subduction in this region. All
of the subduction zones formed at the edge of ocean
basins. Many west Pacific marginal basins are deeper
than predicted by age–depth relationships for major
oceans (Parsons & Sclater 1977). Sclater et al.
(1976) reported this for the Philippine Sea and
Park et al. (1990) confirmed it. Hinschberger et al.
(2003) showed the Banda Sea basins are c. 1000 m
deeper for their age than the Philippine Sea basins.
These are locations with large topographic contrasts
(commonly a change in elevation of the order of
6 km) over distances of the order of 40 km, therefore
with steep slopes that are likely to be unstable.

The trenches (North Sulawesi, Cotobato, Philip-
pines) formed in areas where there has been recent
magmatic activity and relatively young crustal thick-
ening following collisions. The North Banda Sea is a
young ocean basin (12–7 Ma), which means that the
adjacent continental margins are hot. These observa-
tions suggest that hot crust/lithosphere may be a pre-
condition for the initiation of subduction. Arc and
young collision settings provide this.

Sulawesi has been part of the upper plate above
the Banda subduction zone, which formed and
began to roll back at c. 17 Ma. The entire upper
plate was extended and weakened by magmatism,
by the asthenospheric rise that accompanied crustal
thinning, and later by the formation of new ocean
basins. The initiation of subduction that began in
an extensional setting is therefore likely for the
North Sulawesi trench and plausible for the Cotobato
trench and Tolo trough. Seismic lines record exten-
sion in all these areas.

In each case the subduction zone is observed
(Cotobato trench, Tolo trough, Sula deep) or inferred
(North Sulawesi) to have initiated at a corner in the
ocean basin, where relatively local downslope fail-
ures can cause significant initial depression of the
oceanic crust. The two-dimensional sections of ana-
logue models by Lévy & Jaupart (2012) resemble
what is observed – subduction begins during crustal
extension at a continental margin.

The Cotobato trench is interesting because in
purely mechanical terms it was not obviously
needed. Plate convergence was already taken up by
the subduction of the Philippine Sea plate at the Phil-
ippine trench and subduction of the Molucca Sea

plate. This suggests that some subduction zones are
initiated simply because conditions are right, such
as the existence of a corner in an ocean basin, large
topographic contrasts or weak adjacent crust.

The Philippine trench more likely formed in a
contractional setting associated with convergence
of the Philippine Sea plate with Eurasia after regional
plate reorganization at c. 5 Ma (Hall et al. 1995b;
Hall 1996, 2002; Lallemand et al. 1998). The trench
is 1800 km long and, despite subduction of only
c. 200 km, the slab rapidly becomes steep and the
trench is very deep (10 km) in its central part. Lalle-
mand et al. (1998) suggested that subduction initi-
ated at this location and grew from the centre to
the south and north. In both directions the trench
shallows to c. 5500 m and dies out. Like the subduc-
tion zones around Sulawesi, the subduction initiated
at a point, at the edge of an ocean basin where there
was a large difference in elevation, in an area of hot
crust, and grew along-strike. In all cases subduction
initiated at the former continent–ocean boundary
where there were pre-existing faults.

The Philippine trench and fault have been inter-
preted as part of a strain partitioning system in
which the trench takes up the orthogonal conver-
gence of the Philippine Sea plate and the fault
absorbs the lateral component (Fitch 1972). This
explains well the parallelism of the trench and fault
from Mindanao to Masbate (Fig. 13), but implies
that the Philippine fault is very young. However,
between Masbate and southern Luzon, the fault
separates into several strands; the fault crosses
from the east in southern Luzon to the west side of
northern Luzon, where it horse-tails into several
strands (Allen 1962). The simple strain partitioning
model breaks down for this region. The path of the
fault can be explained if it reactivates older faults
in Luzon; this is consistent with suggestions of an
older Miocene history of displacement on the Philip-
pine fault in Luzon. In most cases it is impossible
to determine the ages of the oldest movements on
faults, but it is common to find indications of earlier
movements on active faults which may have reacti-
vated older structures. Thus another factor in the ini-
tiation and development of subduction is likely to be
pre-existing faults.

Some trenches have been interpreted on the west
side of the Philippines (close to Negros and north of
the Sulu arc). The feature offshore of Negros is cur-
rently a thrust, not a trench. It is unlikely to develop
into a trench because the Sulu Sea is not underlain by
oceanic crust, but by highly extended arc crust (see
discussion in Hall 2013). A subduction zone on the
north side of the Sulu arc is sometimes shown on tec-
tonic maps, which partly reflects the limited informa-
tion from this region. Based on the continuation of
the arc into Sabah, it is now clear that the arc was
the product of north-directed, not south-directed,
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subduction of the Celebes Sea, which ceased at the
end of the Miocene (Hall 2013). Nonetheless, these
and other thrust zones in eastern Indonesia often sug-
gested to be incipient subduction zones (the Wetar
thrust, Flores thrust and Manokwari trough) are all
situated at the edge of oceanic basins.

Ophiolites are commonly linked to the initiation
of subduction, such as the models proposed based
on the Izu–Bonin–Marianas arc or the Oman ophio-
lite. These models have some unusual features. For
example, the popular Stern & Bloomer (1992)
model postulates the initiation of subduction at a
transform fault, but with an age difference across
the transform of 99 Ma, a situation observed
nowhere on the present day Earth. Models based
on the Oman ophiolite commonly predict the initia-
tion of subduction at spreading centres. Both types
of model could account for the unusual features of
the Eocene western Pacific, such as boninites, or
the Late Cretaceous Tethys where many ophiolites
formed in a short interval of time and were emplaced
along an along-strike distance of thousands of kilo-
metres. But these are not models that are easy to
test, certainly not by direct observation, and it is
impossible to determine the progression of stages
taking ocean crust to depths of 100 km.

These models do not apply to the many young
subduction zones of the west Pacific margins and
eastern Indonesia, which must have formed by
other mechanisms. None of the subduction zones
discussed in this paper are associated with young
ophiolites. Ophiolites are found in many areas,
including Sulawesi, Halmahera and the Philippines,
but are typically the basement of arcs, are much
older than the Neogene subduction zones and were
mainly emplaced during collision. Some of the sup-
posed ophiolites in this region previously considered
to be young, such as rocks on Seram (e.g. Linthout &
Helmers 1994; Linthout et al. 1997), are now known
to be sub-continental mantle rapidly exhumed during
rollback-driven extension (Pownall et al. 2013,
2014). Nor are the young subduction zones associ-
ated with unusual magmatic rocks such as boninites.
Ophiolites are a red herring in understanding the ini-
tiation of young subduction zones in the west Pacific
margins and east Indonesia.

Conclusions

The initiation of subduction is easy – in the right
place. Marginal basins are the right place (as sug-
gested by Cloetingh et al. 1984). Major ocean basins
with passive margins are not the right place.

For an old passive margin, the migration of an
existing plate boundary is probably the easiest way
to initiate subduction. The Banda region illustrates
such a development. Duarte et al. (2013) proposed

a similar propagation of plate boundaries possibly
initiating subduction at the Atlantic margin at the
present day.

Elsewhere, young subduction zones in the eastern
Indonesian region offer insights into the frequent and
apparently easy initiation of subduction that, up to
now, have been overlooked. In all cases subduction
starts at a point at the edge of an ocean basin. This
is very important and is not a scenario addressed
by numerical or analogue modellers.

The age of the marginal basin seems to be unim-
portant. In most of the examples discussed here,
major extension of topographically higher crust
preceded true subduction as the continental crust
spread over adjacent oceanic crust and depressed it.
Trenches formed close to areas where there had
been recent magmatic activity and/or relatively
young crustal thickening following collisions.

Hot crust/lithosphere may be a pre-condition for
the initiation of subduction. Arc and young collision
settings provide this. Once the oceanic lithosphere
reaches c. 50–80 km depth, eclogites can form and
slab-pull takes over. The subduction zone then grows
along-strike, typically in both directions, from the
starting point. Subduction rollback then begins.

The Philippine trench is similar to the circum-
Sulawesi examples, but may have initiated in a con-
tractional setting. Nonetheless, it confirms some of
the key features required for the initiation of subduc-
tion: there was a significant topographic difference
between the continent and ocean, subduction started
at a point, initiation was at the edge of an ocean basin
and it was close to a region of young arc magmatism.

The initiation of subduction can be observed, but
places where this is possible have been overlooked
or ignored. This may, in part, be due to the apparent
tectonic complexity of the eastern Indonesian region,
but oversimplified plate models showing fully con-
nected microplate boundaries are hindering our
understanding, not aiding it. Modelling is currently
not dealing adequately with the problem. Both ana-
logue and numerical models try to deal with the
instantaneous initiation of subduction across the
entire width of a model, rather than at a point.
Some analogue models (e.g. Mart et al. 2005) do
resemble aspects of the examples described here;
experiments by Lévy & Jaupart (2012) are closest
to what is observed in eastern Indonesia, where sub-
duction began during crustal extension at a
continental margin.

The Wilson cycle postulates a change from a
mature ocean to a declining ocean (Burke 2011) by
the initiation of subduction. However, it is difficult
to identify former passive margins of mature oceans
that have, or are soon likely to, become active mar-
gins. It is also ironic that the Pacific is identified as
an example of a declining ocean, yet has probably
existed for much longer than mature oceans such
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as the Atlantic. The many young subduction zones of
the west Pacific margins and eastern Indonesia sug-
gest that subduction of the mature oceans will
begin by the propagation of subduction from mar-
ginal basins where subduction initiates easily. Places
like the Caribbean, South Sandwich Islands or the
Gibraltar Arc could be sites where this process will
begin for the Atlantic.
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