Aalensis Subzone, Yorkshire, 68
absolute particle abundances, calculation of, 78–83
Acanthoceras jukesbrownei Zone, Europe, 181, 186–90, 191
Acanthoceras rhotomagense Zone, Europe, 181, 186–9, 193
Achanarras Limestone, 7
acritarchs, Kimmeridge Clay, 89, 92
Albian deposits, 134, 137, 183
Albian Stage, Europe, 183
Albian–Cenomanian boundary, Europe, 179, 193
allocyclicity, 133
Alpes-Maritimes, 183
American Upper Cretaceous, 133
ammonite zonal geochronology, Yorkshire, 69
Andean foreland basin, fluviial sediments, 20
Angles, succession, 135, 136–7, 138, 144–50, 154–6, 166
Anglo-Paris Basin, 177–91, 193–4
annual band, 2
annual growth bands, 2, 7, 8
annual and lesser orbital cycles, 2, 7
Appennines, 137
Aptian Urgonian cycles, 172
Archean valley, 166, 170–2
Ardechoise platform, 165, 166
Ardechoise platform, 172
Arnsbergian marine transgressions, Scotland, 65
Asymmetricus Zone, S. France, 43, 44, 47
Atlantic Ocean sediments, 88, 134, 136, 174, 175, 199
Atlas Mountains, 12
atmospheric gases, cyclical movements, 4
Autissiodorensis Zone, Kimmeridge Bay, 76, 99
autumnal equinox, 7
Bahamas, 174
bankfull flood discharge, 27–8, 29
Barremian carbonates
sedimentation rates, 135, 136, 137, 138
Vocontian Trough, 136, 165, 172–5
basin-slope correlations, 165–6
high frequency cycles, 174–5
medium frequency cycles, 172–4
slope-out platform correlations, 166–72
Barremian–Bedoulian boundary, Angles, 136
basin filling, model of, 29–31
basin parameters, estimates of, 26–31
Bell Shale corals, lunar month periodicity, 7
Berriasian
Carbonate platforms, Vocontian Trough, 144
sedimentation rates, Vocontian Trough, 136, 137, 138
Berriasian–Barremian bedding cycles, 195
Berriasian–Barremian interval, Angles, 138
bioturbation, 96, 140
bisaccate pollen, Kimmeridge clay, 78, 81, 86, 87, 90, 92, 93, 102, 105
bivalves, 181
banding in shells, 2, 5, 7
black debris, Kimmeridge Clay, 78, 86, 88, 90, 92, 93, 95, 98, 103, 104, 106
Black Sea sediments, 88
Boreal Basin/Tethys sea-way, 159, 162
Bottacino Gorge, 179, 192
Bou Tchrafine, 43, 45, 46–7, 48
brown wood, Kimmeridge Clay, 86, 88, 90, 94, 98
bundles of cycles, 11, 12, 136
Caha Mountain Formation sediments, 22, 26, 30, 31
Calcicalathina oblongata Biozone, France, 146
calcium carbonate
carbonates, Vocontian Trough, see under Valanginian
carbonate cycles, Vocontian Trough, see under Valanginian
content, 143–4, 146–57
Kimmeridge Clay, 86, 88, 95, 96, 98, 102, 103, 104, 110
see also Barremian carbonates
calcium carbonate curve, 199
calcrete formation, climatic effects on, 25
calendar band, 2
Calycoceras querangeri Zone, Europe, 178, 181, 189–91
Cambrian
days in lunar month, 7
sediments, 200, 201
carbon dioxide feedback, 116, 118, 130
carbon isototope stratigraphy, 181–2
carbonate cycles, Vocontian Trough, see under Valanginian
carbonate percentages and temperature control, 12
carbonates, see Barremian carbonates; calcium carbonate
Carboniferous, 5, 7, 51, 201
carbonate release, 177, 178
climate modelling, 117
climates, 200
continental ice sheets, 54
Munster Basin, 21
periodicities, 65
Scotland, 54, 55, 65
sea level changes, 200
Cast Bed, 186, 187, 188
Castile Formation, 201
Castlehaven Formation, 22
celestial equator, 10
Cenomanian, 201
coherence in western Europe, 177–9, 182–95
stratigraphical framework, 179–82
Cenomanian Chalk, 179
Cenomanian–Turonian δ13C excursion, 191
Cenomanian/Turonian transition, 134
Cenozoic stage boundaries, 202
Central Atlantic, 134
Central North Sea Dome, 72, 73
Central Pacific, 143
Cerastoderma edule, 5, 6, 8
Chalk Marl, 179, 185
Chandler Wobble, 8
channel depth estimation, 28, 29
charcoal, Kimmeridge Clay, 96
chemical variation as cause of cyclicity, 96, 97
Chloritic Sandstone Formation (CSF), 22, 26
Chondrites Event, 191
chorate dinocysts, Kimmeridge Clay, 78, 87, 90, 92, 94, 98
circadian biorhythmicity, 6
circadian change of sea level, 4
clay/quartz, Kimmeridge Clay, 86, 88, 95, 98, 100, 102, 103, 104, 105
Cleveland Basin, 177, 178, 181, 182, 184, 188, 191, 193
cliff of Chames, 166, 168, 169
climate system models, 116-19, 120-3
climatic belt shifts, 109, 111, 158
climatic changes
causes, 9, 10, 25, 26, 54, 100, 101, 116
effects of, 1, 62
sedimentation and, 20, 24, 25, 27, 32, 97, 101, 138
climatic modelling, Late Jurassic, 116-25
Clinocardium nuttalli, tidal patterns, 5, 6
Col du Puech 'de la Suque, GSSP for Givetian/Frasnian boundary, 43
compaction correction factors, 57, 58
condensation of succession, 177
conodont zonal durations within the Givetian, 47, 48
constraints in use of sedimentary cycles, 133-40
corals, lunar month periodicity, 7
Corfu, pro-delta fan, 200
cosmic year, 14
Cretaceous
Atlantic anoxic events, 88
black shales, 88
carbonates platforms, 200
climate system, 195
greenhouse episodes, 201
orbital frequencies, 148, 149
sea-surface temperatures, 130
sedimentary cycles, 117, 133-4, 135, 137, 138
analytical methods, 68
Vocontian, 143, 146, 157
Cretaceous Greenhorn Formation, Colorado, 88-9
Cretaceous/Tertiary boundary, 14
Cretarhabdus crenulatus Biozone, France, 146
Culver Cliff, 179
Cunningtoniceras inerme Zone, Europe, 181, 185, 186-9, 193
cuticle, Kimmeridge Clay, 78, 86, 87, 89, 90, 93, 94, 98, 106, 108
daily band, 2
daily cycle, 2
decadal band, 2
deceleration of Earth spin, 201
decimation and diurnal inequality of tides, 3
decomposition factors, 27
deep water fans, 200
deglaciation, 116
degraded palynomorphs, Kimmeridge Clay, 86, 88, 94, 98
Delaware Basin, 201
Delaware river estuary, 93
dendrochronology, 2, 7
depositional basins, estimation of discharge, 29
depositional cycles, Early Toarcian, see Early Toarcian depositional cycles, Yorkshire
Devonian, 14
duration, 37, 38
sediments, 7, 9, 39, 42-3, 44, 45, 201
see also Munster Basin Devonian sequences
Devonian year, days in, 2
diffusivity
assessment, Munster Basin, 25-6, 32
models for basin-fills, 20, 25-32
dinocysts, Kimmeridge Clay, 86, 87, 89, 90, 92, 93, 98, 102, 106, 107, 111
Dispansum Subzone, Yorkshire, 68
Disparilis Zone, Cornwall, 43, 47
diurnal inequality of tides, 3, 4
diurnal tidal system, 4
Djebel Oust Basin, 134
Dolomites, 137, 169
drainage basin parameters, estimation of, 27-9
dune height, 28
Early Toarcian depositional cycles, Yorkshire, 67-9
Milankovitch band cyclicities, 67, 72, 73
tectonic origin, 72-3
time series analysis, 67, 69-72
Earth spin, deceleration, 201
Earth year, 5-6
Earth-Moon system, 8, 12
tidal cycle and, 3
Earth-Moon-Sun system
insolation and, 9, 10
tidal effects, 6
variations in oscillation, 11
Earth-Sun distance, solar energy related to, 1
East African Rift, 72
East Greenland Basin, sedimentation rates, 23
eccentricity, 1, 9, 10, 11, 12
periodicities, Late Carboniferous, 65
Eifelian, Mech Irdane, 46
Eifelian/ Givetian boundary, GSSP for, 43
El Niño (ENSO) effect, 8
Elatina Formation, 8
Elatina laminates, 7
Empire, Oregon, sediments, 6
energy balance models (EBM), 116, 117
English chalk microrhythms, 178
Eocene, 201
precipitation-evaporation balance, 201
sediments, 7, 8, 200
equator to pole temperature gradient, 125
equilibrium tide, 3
equilibrium time constant (T_{eq}), 20, 30-2
equinoxes, 2, 7, 10, 116
equinoctial tides, 7
erosion patterns, 1, 9
Exodus Zone, Yorkshire, 106
Falciferum maximum flooding event, 68
 falsivalis Zone, Cornwall, 44
Farnennian sediments, France, 43
feedback processes, 116, 117, 130
floating chronologies, 203
Fontcalent, sediments, 137, 138
foraminiferal, Kimmeridge Clay, 89, 96
INDEX 207

Forest Marble, England, 4
fossil group extinctions, 13–14
fossils, sea level changes recorded by, 4
Francis Creek sediments, 5
Frasnian
duration, Munster basins, 23
sediments, France, 43, 47
galactic band, 2
general circulation model (GCM), 115, 116–19, 120–3, 130
‘Gilbert’, the, 139
Givetian
duration, Munster basins, 23
timescale, establishment of, 37–8
estimations of conodont zonal durations, 47
Marble Cliffs, Cornwall, 43–5, 48
Pic de Bissous, 38–43, 46, 47, 48
using couplets, 45, 46, 47
Givetian/Frasnian boundary, 43

ice albedo feedback, 116
ice flux and sea level, 200
ice sheets, 116, 199
Jurassic model, 118, 125, 130
ice-melting, 13
Index Limestone, 53, 54, 55, 58, 59, 60, 61, 62, 65
inoceramid bivalves, 181
insolation changes, 1, 9, 10
climatic effects, 25, 54, 101, 109, 158
model predictions, 122, 124
insolation forcing and carbonate productivity, 158
interannual band, 2
Ireton Shale, 7
Iridium Clay, 14
Jet Rock Member, 68
Jura, 172
Jurassic, 8, 12
climate variations, 115, 116, 125–30
modeling of Milankovitch cycles, 116–25
sediments, 4, 7, 67, 72, 135, 137–8, 172, 200
kerogen sedimentation, Kimmeridge Bay, 89, 90, 91
Kilsyth Trough, 54
see also Limestone Coal Formation, Scotland
Kimmeridge Clay Formation, Dorset, 75–6, 77, 106
Kimmeridge Clay, Yorkshire, 89, 91, 96, 106
Kimmeridge Oil Shale, 89
Kimmeridgian, 67
climate modeling, 119–25
palynofacies cycles, see palynofacies of Kimmeridgian cycles
Kincareline Basin, 54
see also Limestone Coal Formation, Scotland
Knightswood Gas Coal, 55, 58, 59, 60, 61, 62, 64
La Charce (Drôme), 158
Lake Playa, 201
Late Albian Upper Greensand, 183
Late Jurassic climate variations, 115, 116, 125–30
modeling of Milankovitch cycles, 116–25
Lias, 67, 134
mudstones, Yorkshire, 106, 110
Limestone Coal Formation, Scotland, 51, 62–5
data set and sedimentology, 52–4
glacio-eustatic cycles, 51, 54, 64, 65
spectral analysis, 54–62
Livello Bonarelli, 179, 192
Lockatong Formation, 7
Lombardian Basin, 134
Lower Saxony Basin, 177, 178, 181, 183, 184, 188, 191
lunar banding, 7
lunar day, 3, 5, 12
lunar month, 6–7, 12
lunar nodal cycle, 8, 9
lunar perigee, 8
lunar tides, 3, 9
lycopodium spiking, 79–83
Lyme Regis, 67
magnitude–frequency of aggradational events, 23
Majolica Formation, 136
Mantelliceras dixoni Zone, Europe, 181, 182, 183–5, 193

ice ages, 1, 9, 174
208 INDEX

Mantellliceras inflatum Zone, 183

Mantellliceras mantelli Zone, Europe, 180–1, 183, 184

Mantellliceras saxbii Subzone, Europe, 181

Marble Cliffs, Cornwall, 43–5, 48

Marbri6re Nord, 38–42, 43, 45, 46, 47, 48

Marl Mean annual beach discharge, estimation of, 27–8, 29

Mech Irdane

Givetian base, 46

GSSP for Eifelian/Givetian boundary, 43

Mediterranean Pliocene, 143

Melbourne Rock Beds, 193, 194

Mesozoic, 1, 7, 116

cycle recognition, 68

depositional sequences, Europe, 165, 174, 193

stage boundaries, 202

Metoicoceras geslinianum Zone, Europe, 181, 191–3

Midland Valley, see Limestone Coal Formation, Scotland

Milankovitch band, 1, 2, 7, 9, 12, 13

Milankovitch climate variation modelling, see Late Jurassic climate variations

Milky Way, 14

periodic extinctions related to, 13, 14

millennial band, 2

'maximum seasonal forcing' model, 119, 124, 126, 127, 130

Miocene, 202

Sicilian anhydrites, 9

monsoon circulation, 109

Jurassic model, 122, 125

monsoons, 117, 122, 125

Mont Ventoux Chain, 135

Montagne Noire, 38, 39

see also Pic de Bissous

Montagnette, the, 166, 169–70

monthly band, 2

monthly cycle, 2

Mouniers Marls, 166

Munster Basin Devonian sequences, 19–20, 32

basin equilibrium and response, 29–32

cyclicity, 23–5

location and geological setting, 20–2

palaeohydrology, 25–9

subsidence within, 21, 22

time–sediment accumulation rates, 23

Münsterland basin, 177, 178, 181, 184, 186–8, 191, 193

Namurian deposits, Scotland, see Limestone Coal Formation, Scotland

nautiloids, lunar banding, 7

NCAR model, 117

neap tides, 6

Neocardioceras juddii Zone, Europe, 181, 191–3

Neogene, 200

ODP cores, 193

SPECMAP isotope curve, 202

Neostlingoceras carciianense Subzone, Europe, 181, 183

Nettleton Stone, 191

Newark Basin, 2

Niveau Thomel, 193

nodule formation, growth rate formula, 68

North American cyclothem transgressions, 200

North Atlantic Water Passage model, 89

North Sea sediments, 5

thermal doming, 72, 73

obliquity, 1, 9, 10, 11, 100

periodicities, 7

changes through time, 12, 13, 76

values, 46, 65, 76, 139

obliquity signal, recognition of, 134

ocean circulation, 10, 111

ocean core evidence for temperature changes, 2

ocean temperatures, Jurassic model, 119

Old Red Sandstone Basin, see Munster Basin Devonian sequences

Old Red Sandstone (ORS), 19, 22

Ordovician, 14

organic matter, burial of, 200

organic sediment deposition, Kimmeridge Clay, 88

Orinoco Delta sediments, 89, 93

oxygen isotope records, 12, 199

Pacific Ocean, 96, 143, 199

Palaeozoic, 201

carbonate platforms, 200

sediments, 201

stage boundaries, 202

Paltum to Fallacioscum Zones, Yorkshire, 72

Paltum to Tenuicostatum Zones, Yorkshire, 69, 70–1

palynofacies of Kimmeridgian cycles

analytical methods, 78–86

causes of cyclicity, 96–7

classification, 76–8

cycle durations, 76, 97, 99–100

depositional models, 88–91

orbital interpretation, 98, 100–11

origin or particles, 94–5

palaeoenvironmental interpretations, 91–6

particle abundances, 86–8

Pendleian deposits, Scotland, 52

marine transgressions, Scotland, 65

Pennsylvanian sedimentary cycles, 13

perihelion, 2, 10, 117

periodic extinctions, 13–14

Permian, 14, 201

Castile Formation, 201

sea level oscillations, 200

Phanerozoic

climatic cycles, 54

periodicities, 1, 139

phytoplankton blooms, 88

Pic de Bissous, 39, 40, 45

Givetian timescale, 37

microrhythmicity in the Givetian, 41, 42, 48

sediments, 45

Piobbico, 137

plankton

carbonate production, 200

productivity, 88, 106, 108, 109, 110, 111
INDEX

Pleistocene, 8, 14, 68, 116, 122, 143
carbonate production, 200
climatic cycles, 54
glacial fluctuations, 133
marine events, 199
sea level oscillations, 200
sediments, 203
Plenus Bank, 191
Plenus Marls, 177, 191, 193, 194
Pliensbachian, Yorkshire, 72
Plio-Pleistocene, 134, 143
Pliocene
pro-delta fan, 200
sediments, 54, 116, 127, 143, 200, 202
pole-equator insolation gradient, 10
pollen grain sedimentation, 92-3
pollen, Kimeridge Clay, 78, 81, 86, 87, 89, 90, 92, 93, 102, 105
Polygnathus hemiansatus, 46, 47
Pont-de-Laval, 166
Porcupine Basin volcanic centres, 72
power spectral analysis, 54, 56-62, 86, 91
prasinophytes, Kimeridge Clay, 86, 92, 94, 98, 102
pre-Cambrian, 6, 7, 8
pre-Cretaceous, 1
pre-Pleistocene, 8
pre-Pliocene, 54, 116
pre-Quaternary sediments, 143
precession, 1, 2, 9, 10, 11, 12
periodicities, 7
changes through time, 12, 13, 76
values, 45, 46, 65, 76, 139
precession frequency calculations, 46
precession signal, recognition, 134
precipitation, 25
Jurassic model, 121, 125, 126, 127
precipitation minus evaporation budget, 117
precipitation–evaporation balance, 201
preservational conditions, 106
'Primus Event', 188
Proterozoic, 7, 8
carbonate platforms, 200
cycle recognition, 201
proximate dinocysts, Kimeridge Clay, 78, 86, 87, 92
Pueblo, 181
Purple Sandstone Formation, 22, 30
Quaternary
fluvial systems, Munster Basin, 25
ice sheets, 199
sediments, 88, 116, 199, 202
Rattray volcanic centre, 72, 73
Recent, 6, 8
recurrence interval (r) of aggradational events, 23-4
redox cyclicity in sediments, 200
Reynella Siltstone, 8
rhythmcity
irregular or fine scale, 177
loss of, 177
rhythmites, 2, 4
Rochers de Combeau, 166, 169, 170, 171
rock relief, tidal effects on, 3
Rotalipora broteni Zone, Europe, 181
Rotalipora cushmani Zone, Europe, 181
Rotalipora reicheli Zone, Europe, 181
Roundhole Point, Cornwall, 43
Rouvillei Zone, Morocco/France correlation, 46, 47
rugose corals, banding in, 2
salinity indicators, 92
Saynoceras verrucosum Zone, Vocontian Trough, 146
Scaglia Bianca, 136, 178, 179, 192
sea level changes, 9, 62, 175, 193, 200
causes, 200
effects of, 1, 138–9, 194
Jurassic model, 125, 130
record of, 4–5
sediment accumulation rates in non-marine basins, 23
sediment yield in drainage basins, 27, 28
sedimentary cycles, constraints, of, 133–40
sedimentary responses, weak, 130
sedimentary rhythmicity, 1, 11–13
sedimentation, Milankovitch band cycles and, 9–10
semi-diurnal inequality, 5
semi-diurnal tidal cycles, 3, 4–5, 6
Sharpeceras schlueteri Subzone, Europe, 181, 183
shells, growth patterns, 2, 5, 6, 7, 181
Sherkin Sandstone Formation, 22
shoreline proximity indicators, 92
Sicilian anhydrites, 9
Siwaliks molasse, fluvial sediments, 20
Slehan Formation, 22, 26
snow cover, Jurassic model, 125, 127
solar cycles, 2
solar day, 3, 5–6, 7
solar energy, 1
solar frequency band, 2, 8
solar radiation changes
and climate, 116
Jurassic model, 118–19
solar tides, 3
solar year, 8
Southeastern Basin, France, 134, 135
Southerham, Chalk Marl, 179
Southern England, position during Kimmeridgian, 106
Southwest Ireland, 21
see also Munster Basin Devonian sequences
SPECMAP isotope curve, 199, 202
spectral analysis of time series, 54–62
spore sedimentation, 92–3
spores, Kimmeridge Clay, 78, 81, 86, 89, 90, 92, 93, 98, 102, 105
spring tides, 6
Stoliczkaia dispar Zone, 183
Subalpine Basin, 144
sulphate reduction index (SRI), 91, 107
Sun–Earth–Moon system, see Earth–Moon–Sun system
sunspot cycle, 8
surface soil wetness, Jurassic model, 123, 125, 129
surface temperatures, Jurassic model, 120, 124
surface water productivity changes, 127
T. callidiscus ammonite Zone, Vocontian Trough, 152
Tafiliatl condensed shelf developments, 47
Tafiliatl Platform, 43
tasmanitids, Kimmeridge Clay, 94
tectonic band, 2

T. callidiscus ammonite Zone, Vocontian Trough, 152
Tafiliatl condensed shelf developments, 47
Tafiliatl Platform, 43
tasmanitids, Kimmeridge Clay, 94
tectonic band, 2

T. callidiscus ammonite Zone, Vocontian Trough, 152
Tafiliatl condensed shelf developments, 47
Tafiliatl Platform, 43
tasmanitids, Kimmeridge Clay, 94
tectonic band, 2
INDEX

<table>
<thead>
<tr>
<th>Topic</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>tectonic cyclicity</td>
<td></td>
</tr>
<tr>
<td>Gun Point Formation, 32</td>
<td></td>
</tr>
<tr>
<td>Limestone Coal Formation, 62</td>
<td></td>
</tr>
<tr>
<td>Marble Cliffs Cornwall, 45</td>
<td></td>
</tr>
<tr>
<td>Toarcian of Yorkshire, 72, 73</td>
<td></td>
</tr>
<tr>
<td>tectonism, sedimentation and, 20</td>
<td></td>
</tr>
<tr>
<td>temperature changes</td>
<td></td>
</tr>
<tr>
<td>Jurassic model, 125, 128</td>
<td></td>
</tr>
<tr>
<td>ocean core evidence for, 2</td>
<td></td>
</tr>
<tr>
<td>terebratum Zone, Morocco/France correlation, 47</td>
<td></td>
</tr>
<tr>
<td>terrestrial debris, Kimmeridge Clay, 78, 86, 93, 94, 95, 102, 107, 108</td>
<td></td>
</tr>
<tr>
<td>terrestrial palynomorphs, Kimmeridge Clay, 78, 86, 87, 89, 90, 93, 94, 96, 102, 103, 104, 105, 106</td>
<td></td>
</tr>
<tr>
<td>Tertiary, 1, 7</td>
<td></td>
</tr>
<tr>
<td>Tethyan ammonite Zone, France, 166</td>
<td></td>
</tr>
<tr>
<td>Tethyan successions, 134, 178</td>
<td></td>
</tr>
<tr>
<td>Tethys, 159, 162</td>
<td></td>
</tr>
<tr>
<td>thermal doming, North Sea, 72, 73</td>
<td></td>
</tr>
<tr>
<td>thickness-time conversion, 68–9</td>
<td></td>
</tr>
<tr>
<td>tidal cycles, 2, 3, 8</td>
<td></td>
</tr>
<tr>
<td>days in lunar month and Earth year and, 5</td>
<td></td>
</tr>
<tr>
<td>effects of, 3–5, 7, 9</td>
<td></td>
</tr>
<tr>
<td>tidal nodes, 3</td>
<td></td>
</tr>
<tr>
<td>time off perihelion, the, 10</td>
<td></td>
</tr>
<tr>
<td>time series analysis, methods of, 55–8</td>
<td></td>
</tr>
<tr>
<td>Toarcian depositional cycles, see Early Toarcian</td>
<td></td>
</tr>
<tr>
<td>depositional cycles, Yorkshire</td>
<td></td>
</tr>
<tr>
<td>Todilto Formation, 7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Total Oxygen Content, Kimmeridge Clay, 86, 88, 91, 95, 96, 103, 104, 105, 107, 108, 110</td>
<td></td>
</tr>
<tr>
<td>Triassic, 7, 117, 169</td>
<td></td>
</tr>
<tr>
<td>carbonate platforms, 200, 201</td>
<td></td>
</tr>
<tr>
<td>temperature oscillations, 117</td>
<td></td>
</tr>
<tr>
<td>Triassic–Jurassic, precipitation–evaporation balance, 201</td>
<td></td>
</tr>
<tr>
<td>Turritilites acutus Subzone, Europe, 181</td>
<td></td>
</tr>
<tr>
<td>Turritilites costatus Subzone, Europe, 177, 181</td>
<td></td>
</tr>
<tr>
<td>UKUniversities Global Atmospheric Modelling Programme (UGAMP) model, 115, 117, 118–19</td>
<td></td>
</tr>
<tr>
<td>Umbria–Marche Basin, 178, 179, 191, 193</td>
<td></td>
</tr>
<tr>
<td>uncompacted volume of sediment, 27</td>
<td></td>
</tr>
<tr>
<td>Upper Jurassic-Lower Cretaceous succession,</td>
<td></td>
</tr>
<tr>
<td>Fontcalent, 135, 137, 138</td>
<td></td>
</tr>
<tr>
<td>Urgonian formations, France, 172, 173, 174</td>
<td></td>
</tr>
<tr>
<td>Valanginian</td>
<td></td>
</tr>
<tr>
<td>carbonate cycles, Vocontian Trough, 143–4, 158–62 analysis, 146, 148–58, 162</td>
<td></td>
</tr>
<tr>
<td>carbonate productivity, 158</td>
<td></td>
</tr>
<tr>
<td>durations, 156, 157</td>
<td></td>
</tr>
<tr>
<td>lithostratigraphy and biostratigraphy, 144–6, 147</td>
<td></td>
</tr>
<tr>
<td>origin of variations, 146</td>
<td></td>
</tr>
<tr>
<td>sediments, Angles, 135, 136, 137, 138 stage duration, 148</td>
<td></td>
</tr>
<tr>
<td>Valanginian–Hauterivian interval, France, 143</td>
<td></td>
</tr>
<tr>
<td>Valenta Slate Formation, 22</td>
<td></td>
</tr>
<tr>
<td>Varcus zone, France, 43</td>
<td></td>
</tr>
<tr>
<td>Varcus/Hermannii Zone, France, 47</td>
<td></td>
</tr>
<tr>
<td>Variabilis to Striatusulum Zones, Yorkshire, 69–70, 71</td>
<td></td>
</tr>
<tr>
<td>Variabilis Zone, duration, Yorkshire, 68</td>
<td></td>
</tr>
<tr>
<td>vegetation patterns, 1, 109, 111</td>
<td></td>
</tr>
<tr>
<td>Vendian, 14</td>
<td></td>
</tr>
<tr>
<td>Vergons, 183</td>
<td></td>
</tr>
<tr>
<td>vernal equinox, 7</td>
<td></td>
</tr>
<tr>
<td>Vocontian Basin, 177, 178, 183, 184, 189, 191, 193, 195</td>
<td></td>
</tr>
<tr>
<td>Vocontian sediments, 135</td>
<td></td>
</tr>
<tr>
<td>Vocontian Trough</td>
<td></td>
</tr>
<tr>
<td>carbonate cycles, see under Valanginian</td>
<td></td>
</tr>
<tr>
<td>platform and pelagic carbonates relationship, 165–75</td>
<td></td>
</tr>
<tr>
<td>volume of compacted sediment, 27</td>
<td></td>
</tr>
<tr>
<td>Washing Ledge Shales, 76</td>
<td></td>
</tr>
<tr>
<td>Washing Ledge Stone Band, 76</td>
<td></td>
</tr>
<tr>
<td>water discharge, power of, 28, 29</td>
<td></td>
</tr>
<tr>
<td>water temperature indicators, 92</td>
<td></td>
</tr>
<tr>
<td>water turbulence indicators, 92</td>
<td></td>
</tr>
<tr>
<td>water vapour in atmosphere, Jurassic model, 119</td>
<td></td>
</tr>
<tr>
<td>Wateroceras archaeocretacea, 181</td>
<td></td>
</tr>
<tr>
<td>weathering processes, alteration of, 9</td>
<td></td>
</tr>
<tr>
<td>Wessex Basin, 72</td>
<td></td>
</tr>
<tr>
<td>Western Interior Basin, USA, 133, 134, 181, 193</td>
<td></td>
</tr>
<tr>
<td>Western Interior Seaway, 200</td>
<td></td>
</tr>
<tr>
<td>Wood Bay Group, Spitsbergen, 20</td>
<td></td>
</tr>
<tr>
<td>Wurmian ice age, 174</td>
<td></td>
</tr>
</tbody>
</table>