


unknown volcanic edifices across the ice-shrouded
WARS.

Extent and activity of subglacial volcanism

We have identified at least 138 likely volcanic
edifices distributed throughout the WARS. This

represents a significant advance on the total of 47
identified volcanoes across the whole of West Ant-
arctica, most of which are visible at the surface and
are situated in Marie Byrd Land and the Transantarc-
tic Mountains (LeMasurier et al. 1990). The wide
distribution of volcanic structures throughout the
WARS, along with the presence of clusters of

Fig. 3. The upper panel shows an echogram from NASA’s Icebridge mission (NSIDC 2014) that shows generally
good agreement between a cone on the echogram and on the Bedmap2 data. The lower panel shows an echogram
from Corr & Vaughan (2008) with basal topography picking out two cones; the dark layer above the bed is tephra
believed to have erupted around 2000 years ago.

Table 3. Statistical comparison of the morphologies of the cones identified in this study identified as volcanoes

Height
(m)

Average
diameter (km)

Axis
ratio

Volume
(km3)

Confidence
factor

(a) (b) (a) (b) (a) (b) (a) (b) (a)

Average 701 940 21.9 17.1 1.19 2.11 144 150 3.75
Standard Deviation 641 670 10.7 11.6 0.09 0.81 345 371 0.56
Median 475 810 20.5 15.3 1.17 1.98 42 31 3.5
Minimum 100 100 4.5 2.3 1.00 1.13 0.5 0.2 3
Maximum 3850 3030 58.5 63.3 1.44 5.23 2542 3086 5

Comparison with: (a) those from a global database of shield volcanoes; and (b) Grosse et al. (2014). The two are similar, apart from the
long-short axis ratio; our cones are, on average, more circular than shield volcanoes elsewhere. This could be linked to specific glaciovol-
canic eruption mechanisms, but is most likely a data bias due to our detection methods excluding more elliptical edifices.
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volcanism concentrated within the Marie Byrd
Land dome, is markedly similar to the East African
Rift System, which is also >2000 km in length and
flanked by the Ethiopian and Kenyan domes (Fig.
1b) (Siebert & Simkin 2002; Ebinger 2005). Mor-
phologically, the volcanoes have volume–height
characteristics and basal diameters that closely

match those of rift volcanoes around the world
(Fig. 5; Table 3). Bearing in mind that data paucity
beneath the Ross Ice Shelf precluded meaningful
analysis of a significant terrain also considered to
be part of the WARS, the total region that has expe-
rienced volcanism is likely to be considerably larger
than that we have identified here.

Cone 91

Cone 60

Cone 21

Mouna Kea, Hawaii

Erta Ale, Ethiopia

Marsabit, Kenya

5 km 10 km 15 km 20 km 25 km 30 km

1000 m

1000 m

1000 m

1000 m

1000 m

1000 m

Fig. 4. Cross-sections of three cones from this study (numbers 21, 60 and 91: see Fig. 2 and Table 2 for more details
and locations) and three prominent shield volcanoes, namely Mauna Kea (Hawaii), Erta Ale and Marsabit (East
African Rift).

Fig. 5. Volume/height chart of the cones from this study (crosses) superimposed over data from volcanoes
worldwide (Grosse et al. 2014). The cones closely fit the morphology data for shield volcanoes, as would be expected
for basalt-dominated rift volcanism.
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The activity of the WARS has been the subject of
a longstanding debate, with one side advocating a
largely inactive rift (LeMasurier 2008) and others
suggesting large-scale volcanism (Behrendt et al.
2002). The arguments in favour of an inactive rift
are based on the anomalously low elevation of the
WARS compared to other active continental rifts
(Winberry & Anandakrishnan 2004; LeMasurier
2008) and the relative absence of basalt pebbles
recovered from boreholes (LeMasurier pers. comm.
2015). Conversely, high regional heat fluxes (Sha-
piro & Ritzwoller 2004; Schroeder et al. 2014), geo-
magnetic anomalies (Behrendt et al. 2002) and
evidence of recent subglacial volcanism (Blanken-
ship et al. 1993; Corr & Vaughan 2008) suggest
that the rift is currently active. This study provides
evidence of a large number of subglacial volcanoes,
with their quasi-conical shield volcano type geome-
tries still intact. The largely uneroded nature of the
cones suggests that many may be of Pleistocene
age or younger, which supports the argument that
the rift remains active today.

From this study, we are not able to determine
whether the different volcanoes are active or not;
however, the identification of multiple new volcanic
edifices, and the improved regional sense of their
geographical spread and concentration across the
WARS, may guide future investigation of their
activity. Several previous studies have suggested
that the Marie Byrd Land massif is supported by
particularly low-density mantle, possibly compris-
ing a volcanic ‘hotspot’ (Hole & LeMasurier
1994; Winberry & Anandakrishnan 2004). Tephra
layers recovered from the Byrd Ice Core near the
WAIS divide suggest that multiple Marie Byrd
Land volcanoes were active in the Late Quaternary
(Wilch et al. 1999), while recent seismic activity
in Marie Byrd Land has been interpreted as cur-
rently active volcanism (Lough et al. 2013). In the
Pine Island Glacier catchment, strong radar-sounded
englacial reflectors have been interpreted as evi-
dence of a local eruption that occurred approxi-
mately 2000–2400 years ago (Fig. 3) (see Corr &
Vaughan 2008) while, on the opposite rift flank in
the Transantarctic Mountains, Mount Erebus com-
prises a known active volcano located above another
potential volcanic hotspot (Gupta et al. 2009). Vol-
canism across the region is also likely to contribute
to the elevated geothermal heat fluxes that have been
inferred to underlie much of the WAIS (Shapiro &
Ritzwoller 2004; Fox Maule et al. 2005; Schroeder
et al. 2014). The deployment of broadband seismics
to recover the mantle structure beneath the WAIS is
now showing great promise (e.g. Heeszel et al.
2016), and our map of potential volcanic locations
could help target further installations directed to-
wards improved monitoring of the continent’s sub-
glacial volcanic activity.

Implications for ice stability and future
volcanism

The wide spread of volcanic edifices and the possi-
bility of extensive volcanism throughout the
WARS also provides potential influences on the
stability of theWAIS. Many parts of theWAIS over-
lie basins that descend from sea level with distance
inland, lending the ice sheet a geometry that is
prone to runaway retreat (Bamber et al. 2009;
Alley et al. 2015). Geological evidence points to
the likelihood that the WAIS experienced extensive
retreat during Quaternary glacial minima (Naish
et al. 2009) and concurrently contributed several
metres to global sea-level rise (O’Leary et al.
2013). Currently, the WAIS may be undergoing
another such wholesale retreat, as ice in the Pacific-
facing sector has consistently been retreating from
the time of the earliest aerial and satellite observa-
tions (Rignot 2002; McMillan et al. 2014; Mouginot
et al. 2014). We do not consider it likely that volca-
nism has played a significant role in triggering
the current retreat, for which there is compelling
evidence that the forcing has initiated from the mar-
gins (Turner et al. 2017), but we do propose that
subglacial volcanism has the potential to influence
future rates of retreat by (1) producing enhanced
basal melting that could impact upon basal ice
motion and (2) providing edifices that may act to
pin retreat.

On the first of these possibilities, some authors
have suggested that active subglacial volcanism,
through providing enhanced basal melting that
might ‘lubricate’ basal motion, could play a role in
WAIS instability (Blankenship et al. 1993; Vogel
et al. 2006; Corr & Vaughan 2008). A possible anal-
ogy is provided by subglacial volcanism in Iceland,
where subglacial eruptions have been known to
melt basal ice, flood the basal interface and induce
periods of enhanced ice flow (e.g. Magnússon
et al. 2007; Einarsson et al. 2016); however, in Ice-
land’s ice caps the ice is considerably thinner than in
the WAIS and, hence, more prone to subglacial-
melt-induced uplift. Nevertheless, there is evidence
to suggest that changes to subglacial water distribu-
tion can occur beneath the WAIS, and that they can
sometimes have profound impacts on ice dynamics:
examples are ice-dynamic variability over subglacial
lakes (e.g. Siegfried et al. 2016) or the suggestion
that subglacial water pulses may have been responsi-
ble for historical occurrences of ice-stream piracy
(e.g. Anandakrishnan & Alley 1997; Vaughan et al.
2008). Much recent attention has focused on the
drainage of subglacial lakes comprising plausible
triggers of such dynamic changes, but subglacial
eruptions may represent another pulsed-water source
whose occurrence has rarely, if ever, been factored
into ice-sheet models. Even inactive or dormant
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volcanism has the potential to influence ice flow by
increasing heat flux to the subglacial interface; this
may generate a basal melt cavity and enhance ice
flow (Bourgeois et al. 2000; Schroeder et al. 2014).

On the other hand, volcanic edifices, whether
active or not, stand as significant protuberances
which may act geometrically as stabilizing influ-
ences on ice retreat. Numerical models used to pro-
ject potential rates of WAIS retreat show that, once
initiated, ice retreat will continue unabated as long
as the ice bed is smooth and downslopes inland,
but that any increase in roughness or obstacle in
the bed can act to delay or stem retreat (Ritz et al.
2015; Nias et al. 2016). We have identified here
a number of volcanic edifices sitting within the
WAIS’ deep basins; these edifices, which are likely
to owe their existence to volcanism, could represent
some of the most influential pinning points for past
and future ice retreat.

Looking ahead, the thinning and potential
removal of ice cover from the WARS volcanic prov-
ince could have profound impacts for future volcanic
activity across the region. Research in Iceland has
shown that with thinning ice cover, magma pro-
duction has increased at depth as a response to
decompression of the underlying mantle (Jull &
McKenzie 1996; Schmidt et al. 2013). Moreover,
there is evidence that, worldwide, volcanism is
most frequent in deglaciating regions as the overbur-
den pressure of the ice is first reduced and then
removed (Huybers & Langmuir 2009; Praetorius
et al. 2016). Unloading of the WAIS from the
WARS therefore offers significant potential to
increase partial melting and eruption rates through-
out the rifted terrain. Indeed, the concentration of
volcanic edifices along the WARS could be con-
strued as evidence that such enhanced volcanic activ-
ity was a feature of Quaternary minima. This raises
the possibility that in a future of thinning ice cover
and glacial unloading over the WARS, subglacial
volcanic activity may increase and this, in turn,
may lead to enhanced water production and contrib-
ute to further potential ice-dynamical instability.

Conclusions

By applying morphometric analysis to a digital ele-
vation model of the West Antarctic Rift System,
and assessing the results with respect to auxiliary
information from ice-surface expressions to aero-
geophysical data, we have identified 138 subglacial
volcanic edifices spread throughout the rift. The
volcanoes are widely distributed in the broad rift
zone, with particular concentrations in Marie
Byrd Land and along the central WARS axis. The
results demonstrate that the West Antarctic Ice
Sheet shrouds one of the world’s largest volcanic

provinces, similar in scale to the East African
Rift System. The overall volcano density beneath
West Antarctica was found to be one edifice per
18 500 ± 500 km2, with a central belt along the
rift’s central sinuous ridge containing one edifice
per 7800 ± 400 km2. The presence of such a volcanic
belt traversing the deepest marine basins beneath the
centre of the West Antarctic Ice Sheet could prove to
be a major influence on the past behaviour and future
stability of the ice sheet.

We would like to thank John Smellie and Matteo Spagnolo
for insightful and thorough reviews of a first draft of this
manuscript that contributed, we hope, to a much improved
paper.
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