Geographical Index

Africa xi, xv, 51, 175, 180–1, 183, 188
- Algeria 36, 165–72, 197–210
- Chad 175, 181
- Egypt 36, 93–102, 183
- Gabon 5
- Guinea 5
- Libya 36, 45, 102, 107, 165–72, 197
- Morocco 36, 197
- Niger 181, 185, 188
- Senegal 200
- Sudan 181

Americas
- Canada 36, 41, 107, 175
- Columbia 36
- USA 43, 102
- Alabama 36, 106
- Georgia 36
- Kentucky 99
- Louisiana 100
- New York 36, 38, 106
- Pennsylvania 38, 43, 106–7
- Tennessee 99
- Virginia 36, 38, 43

Asia 36
- Arabia 36, 122, 124, 126–7, 153
- China 36
- India 229–42
- Iraq 180
- Israel 180
- Jordan 180, 182–3, 188
- Syria 180
- USSR 36, 175, 180–3

Australia 180

Europe
- Belgium xi, 36, 44, 65–7, 69, 71, 73–6, 80, 83, 108
- Czechoslovakia 36, 38, 175
- France 36, 38, 41, 66, 69, 79–83, 88–90, 108–9, 144, 146–9, 176, 181–3
- Brittany 51–6, 58, 165, 175–6
- Lorraine xv, 45, 75, 79–80, 109, 176–9, 188–9
- Normandy 52–3, 55–6, 60, 165–168, 170–1, 186
- Germany 10, 14, 36, 65–7, 69, 73–6, 107–8, 110–4, 176–7, 180, 183–5, 188
- Great Britain/UK
 - England xvi, 102, 108–9, 111, 122–3, 126–7, 147, 149, 151–2, 161, 175
 - Scotland 146, 154, 156–60
 - Wales 62, 122, 125, 128, 152, 158, 213–9
- Greece 14, 175, 181
- Italy 13
- Luxemburg 66, 75, 79–90, 102, 176–9, 182–5, 188–9
- Portugal 36, 51–61, 122, 128, 158, 165, 167
- Spain 36, 52
- Sweden 36
- Switzerland 133–8, 168, 186, 188
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>accretion, intrasedimentary</td>
<td>167, 172, 209</td>
</tr>
<tr>
<td>mechanical</td>
<td>xiii, iv, 101, 145, 149, 172, 183, 209</td>
</tr>
<tr>
<td>'snow-ball'</td>
<td>152, 167, 172</td>
</tr>
<tr>
<td>accretions</td>
<td>214, 216, 218</td>
</tr>
<tr>
<td>adsorption</td>
<td>xv, 137-8</td>
</tr>
<tr>
<td>aggradational potential</td>
<td>90</td>
</tr>
<tr>
<td>allocyclic factors</td>
<td>45, 79, 90</td>
</tr>
<tr>
<td>amorphous precursors</td>
<td>130</td>
</tr>
<tr>
<td>ankerite</td>
<td>23, 28, 158</td>
</tr>
<tr>
<td>amorphous</td>
<td>33</td>
</tr>
<tr>
<td>apatite</td>
<td>98, 133-4, 142, 149, 172, 209</td>
</tr>
<tr>
<td>Appalachian Basin</td>
<td>36, 42, 106-9</td>
</tr>
<tr>
<td>Ardennes Shelf</td>
<td>35-6, 44, 65</td>
</tr>
<tr>
<td>Ardenno-Rhenish Massif</td>
<td>65-78, 80</td>
</tr>
<tr>
<td>Ardenish Ironstone</td>
<td>157-9, 159</td>
</tr>
<tr>
<td>Armorica</td>
<td>36, 38</td>
</tr>
<tr>
<td>Armorican Massif</td>
<td>41-60, 83, 165</td>
</tr>
<tr>
<td>Armorican Quartzite Formation</td>
<td>165</td>
</tr>
<tr>
<td>autocyclic factors</td>
<td>45, 79</td>
</tr>
<tr>
<td>backscattered electron imagery (BEI)</td>
<td>ix, 121, 146-61</td>
</tr>
<tr>
<td>bacterial action</td>
<td>15, 180</td>
</tr>
<tr>
<td>Baltic province</td>
<td>36</td>
</tr>
<tr>
<td>barrier islands</td>
<td>205, 206</td>
</tr>
<tr>
<td>bars, barrier</td>
<td>112, 115</td>
</tr>
<tr>
<td>breaker</td>
<td>100</td>
</tr>
<tr>
<td>distributary</td>
<td>205</td>
</tr>
<tr>
<td>near-shore</td>
<td>33</td>
</tr>
<tr>
<td>sand</td>
<td>177</td>
</tr>
<tr>
<td>bauxite</td>
<td>149, 181, 227</td>
</tr>
<tr>
<td>berthierine</td>
<td>x, xiii, xxvii, xx, 6, 9, 12-3, 15, 20, 40, 93, 97, 112, 122, 126-7, 129-30, 141-2, 152, 156, 171, 175, 181, 185, 221</td>
</tr>
<tr>
<td>(formation of)</td>
<td>24-5</td>
</tr>
<tr>
<td>precipitation from fluids xii</td>
<td>144-5</td>
</tr>
<tr>
<td>precipitation from gels xii</td>
<td>10-7</td>
</tr>
<tr>
<td>transformation from kaolinite/geothite xii</td>
<td>6-7, 26-8, 40, 151, 221, 226-7</td>
</tr>
<tr>
<td>berthieroid</td>
<td>xiv, xv</td>
</tr>
<tr>
<td>Betws Garmon Ironstone</td>
<td>122, 125, 128, 213, 216-8</td>
</tr>
<tr>
<td>bioclasts</td>
<td>156-8, 168</td>
</tr>
<tr>
<td>biogenic fragments</td>
<td>107</td>
</tr>
<tr>
<td>bioherm</td>
<td>107</td>
</tr>
<tr>
<td>bioturbation</td>
<td>xiv, xv, 10, 20, 24, 58, 84, 95, 100, 205, 213</td>
</tr>
<tr>
<td>Black Sea 41</td>
<td></td>
</tr>
<tr>
<td>black shales</td>
<td>19, 33, 43, 233</td>
</tr>
<tr>
<td>bog, iron ore</td>
<td>14, 23</td>
</tr>
<tr>
<td>Bohemian Massif</td>
<td>175</td>
</tr>
<tr>
<td>brachiopods</td>
<td>213-4</td>
</tr>
<tr>
<td>Brejo Fundeiro Formation</td>
<td>53-5</td>
</tr>
<tr>
<td>brine</td>
<td>13-6</td>
</tr>
<tr>
<td>Buçaco syncline</td>
<td>59</td>
</tr>
<tr>
<td>calcarenites</td>
<td>107</td>
</tr>
<tr>
<td>calcite</td>
<td>xv, 65, 72-3, 142, 152, 158</td>
</tr>
<tr>
<td>cathodoluminescence</td>
<td>229, 239</td>
</tr>
<tr>
<td>cement</td>
<td>xvi, 97, 160, 169, 235, 239</td>
</tr>
<tr>
<td>Ceradotus</td>
<td>97</td>
</tr>
<tr>
<td>Cheloceras Limestone</td>
<td>65, 71</td>
</tr>
<tr>
<td>chemical substitution</td>
<td>4, 188</td>
</tr>
<tr>
<td>chemisorption</td>
<td>11-2</td>
</tr>
<tr>
<td>chlorite</td>
<td>xvi, 6, 33, 72, 129, 142, 151</td>
</tr>
<tr>
<td>Chondrites 95</td>
<td></td>
</tr>
<tr>
<td>Cleveland Ironstone Formation</td>
<td>ii, xvi, 19, 121-2, 124, 127, 148, 151, 153, 156, 160-1, 221-7</td>
</tr>
<tr>
<td>climate</td>
<td>x, 40, 210</td>
</tr>
<tr>
<td>clinohochrome</td>
<td>129</td>
</tr>
<tr>
<td>Cloughton Formation</td>
<td>153, 155</td>
</tr>
<tr>
<td>coal</td>
<td>20, 22</td>
</tr>
<tr>
<td>coastal onlap</td>
<td>83-8</td>
</tr>
<tr>
<td>coastal progradation</td>
<td>94, 100, 107</td>
</tr>
<tr>
<td>colloids</td>
<td>11, 40, 101, 175, 183, 222</td>
</tr>
<tr>
<td>colloid dehydration</td>
<td>130</td>
</tr>
<tr>
<td>condensed, deposits</td>
<td>42, 65, 80, 133-5</td>
</tr>
<tr>
<td>condensed sections</td>
<td>108</td>
</tr>
<tr>
<td>condensed sequence</td>
<td>105, 107-8</td>
</tr>
<tr>
<td>condensed intervals</td>
<td>238, 241</td>
</tr>
<tr>
<td>condones</td>
<td>65</td>
</tr>
<tr>
<td>Continental Terminal of West Africa</td>
<td>175, 180-1</td>
</tr>
<tr>
<td>Coral Rag 108-10</td>
<td></td>
</tr>
<tr>
<td>core</td>
<td>xx</td>
</tr>
<tr>
<td>Cornwall-Rhenish Basin</td>
<td>44, 73</td>
</tr>
<tr>
<td>cortex</td>
<td>xiii, xx, 147, 159, 168-9</td>
</tr>
<tr>
<td>cortex pairs</td>
<td>99</td>
</tr>
<tr>
<td>cortical laminae</td>
<td>xx</td>
</tr>
<tr>
<td>layers</td>
<td>98, 169</td>
</tr>
<tr>
<td>craton</td>
<td>36, 200</td>
</tr>
<tr>
<td>cross bedding</td>
<td>84, 180, 205-6, 213</td>
</tr>
<tr>
<td>cross stratification</td>
<td>102</td>
</tr>
<tr>
<td>crusts</td>
<td>205</td>
</tr>
<tr>
<td>crystal orientation</td>
<td>127</td>
</tr>
<tr>
<td>cycles</td>
<td>24, 37, 59, 84, 86, 176</td>
</tr>
<tr>
<td>cyclicity</td>
<td>60-4, 79, 94, 221</td>
</tr>
<tr>
<td>cyclothem</td>
<td>177</td>
</tr>
<tr>
<td>debris flow</td>
<td>216</td>
</tr>
<tr>
<td>depocentres</td>
<td>89</td>
</tr>
<tr>
<td>deposition, model of 79, 209</td>
<td></td>
</tr>
<tr>
<td>diagenesis x, xiv</td>
<td>3, 20, 26, 28, 74, 175, 214</td>
</tr>
<tr>
<td>burial xvi</td>
<td>5, 158</td>
</tr>
<tr>
<td>early 9, 15</td>
<td></td>
</tr>
<tr>
<td>post-oxic ix</td>
<td>27-8</td>
</tr>
<tr>
<td>sub-oxic 62</td>
<td></td>
</tr>
<tr>
<td>diagenetic replacement</td>
<td>108, 158</td>
</tr>
<tr>
<td>diagenetic zones, oxic</td>
<td>24-8, 62, 130</td>
</tr>
<tr>
<td>post-oxic 25, 27-8</td>
<td></td>
</tr>
<tr>
<td>sub-oxic 62</td>
<td></td>
</tr>
<tr>
<td>diagrams, Fe-Mg-Al</td>
<td>Si-Al-R2 5, 6</td>
</tr>
<tr>
<td>diastems</td>
<td>106, 115</td>
</tr>
<tr>
<td>Differdange – Longary Basin</td>
<td>82, 85, 87</td>
</tr>
<tr>
<td>Dinant Synclinorium</td>
<td>69</td>
</tr>
<tr>
<td>Diplocraterion 95</td>
<td>95</td>
</tr>
<tr>
<td>dolomite</td>
<td>65, 219</td>
</tr>
<tr>
<td>Dornes/Amëndoa Rise</td>
<td>57, 59</td>
</tr>
<tr>
<td>dunes, aeolian</td>
<td>204-5</td>
</tr>
<tr>
<td>'Dunham-style' classification</td>
<td>xix</td>
</tr>
<tr>
<td>economics vii</td>
<td>19, 201, 213</td>
</tr>
<tr>
<td>Eh/pH conditions</td>
<td>4, 10-7, 24, 175, 209</td>
</tr>
</tbody>
</table>
electron diffractometry 125
electron microprobe analysis ix, 3–4, 121, 134, 168, 229
emersion 206
environment, barrier island 167, 205, 206
biologically controlled xiii, xv
deltaic 175, 181
fluvatile 175, 181
lacustrine 175, 181
lagoonal xi, 105–6, 111, 204
sub-oxic/oxic/post-oxic xiv, 15, 25–6, 40
pedogenic 175
shallow marine 175, 177
Esch-Ottange Basin 82, 85, 87
European Community vii, viii
eustasy 42, 45, 51, 60–1, 79, 81–2, 88
evaporites 72
event beds 114
event stratification x
exhalitive ores 13, 65
extinction 38
facies, black shale 34–5
cemented 209
conglomeratic 209
detrital 209
differences in 133
‘fossil-ore’ 69, 70
micconglomeratic 209
non-detrital 209
faecal pellets 99, 101
feldspar 12, 26
ferriclasts 179, 183–5, 188
ferricrutes 180, 188
ferrhydrite 134, 137
Ferruginous Oolite Formation 231–5
floccules 99
foraminiferal-serpulid overgrowth 112
forland basin 36
francolite 143
Frodingham Ironstone vii, xvi, 102, 122–4, 127
gamma-ray spectrometry 221
gel xiv, xvi, 10, 13, 154
greenalite 12, 15
groundwater, oscillating 175–6
Giumal Sandstone 233–6, 239
hardgrounds 33, 56, 58, 60, 69–71, 80, 100, 134, 175, 188, 235, 238
halmyrolosis 72
hematite 5, 9, 69, 73, 107, 133, 149, 159, 168–9, 214–5, 230
Hen dy Capel Ironstone 215–6
hiatus 34, 42, 82, 213, 217
Highworth Grit 149
hydrogen ion activity 209
hydrothermal alteration/activity 40, 214–5, 217–8
illite 73, 97, 134, 156
impact cratering 38
Inoceramus 95
interface, redox 180
intraclasts 56, 58, 158
intrasedimentary processes 209
iron availability 23–4
iron formation viii, xvi, 107
iron oxyhydrates 9
ironstone belt 197
ironstone formation ix, x, xviii
ironstone formations (origin of) by reworking of pedogenic allochems xi, 89, 175–90
clastic trap model x, xi
in marine environments xi, xvi, 26–8, 34, 40–1, 44, 60, 71–2, 80–1, 89, 114–5, 133–8
ironstones, (age of)
Cenozoic
Neogene
Pliocene 40
Miocene 36, 40, 147, 149
Paleogene 33–4
Oligocene 181
Eocene 36, 40
Mesozoic 229
Cretaceous 34, 36, 39–40, 93–102, 122, 146–7, 149, 181, 239
Santonian 39
Coniacian 39
Cenomanian 39
Albian 239
Jurassic x, xv, xxii, 10, 19, 24–8, 30, 34, 36, 38, 40, 109, 112, 122, 149, 155, 176, 238
Oxfordian 38, 108–9, 133–8
Callovian 133–8
Aalenian 79–80, 112–4, 153
Toarcian 79–90, 146, 157
Pliensbachian 38, 109, 122, 148–50, 152, 221–2
Sinemurian 38, 110–1, 122
Hettangian 38, 154, 159
Triassic 40, 230
Palaeozoic
Permian 40
Carboniferous 19–24, 40
Devonian x, xv, 33–4, 36, 39–40, 42, 168, 197, 201–2
Famennian 39, 65–75, 165–6, 201–2, 206, 209
Frasnian 39, 65–75, 166, 209
Eifelian 39–166
Emnian 39–166
Siegenian 39–165, 168
Gedinnian 165
Pragian 201–2, 204
Lochkovian 107, 201–3, 205, 208
Pridoli 208
Ludlow 201–2, 205
Wenlock 39
Index

Llandovery 38–9, 169, 201
Ashgill 38, 51, 59, 165
Caradoc 38, 51, 56–9, 171, 213, 218
Llandeilo 38, 167, 215–6, 218
Llanvirn 38, 51, 55–7, 169, 171, 213–4
Arenig 38, 165, 167, 171, 173, 213–7
Tremadoc 165, 215
ironstones, (facies of) xviii
blackband ix, 23
claystone ix, 23
Clinton-type xviii, 65–78, 79, 102, 105, 201
concentrated 51, 93–102
Lahn Dill-type 13
lean 51, 93–102
Minette-type xi, 9, 79–81, 88, 109–12, 175–88
Salzgitter-type 183–6
Isocardia 95
isotopes, stable x, 22, 188
Jet Rock 24
kaolinite xii, xiv, xvi, 4, 6, 26, 40, 98, 142, 152, 177, 183, 185, 227, 236
karst 183
Keefer Formation 106
Kerch Ironstone 41, 175
Kermeur Formation 53–5
Kioto Limestone 231
laterites x, xiii, 108, 111, 130, 151, 177, 180, 227
London-Brabant Massif 65, 75, 80
Louredo Formation 53–5
Luxemburg Gulf 176–7
Luxemburg Sandstone Formation 82
magnetite xvi, 9, 12, 15–7, 214, 217–9
Mahanango Formation 43, 106
Mariembourg Shales 71
marine shales 22, 28
marker beds 65
Markov chain analysis 201
mechanism of transport 209
metamorphism 5, 126, 229, 240–1
metasomatism 25–6, 28, 187, 214
microbes, activity of 175–6, 187
microboring 112
microconcretions xiii, xiv
ferruginous 177
microfabric 144
microfacies 69
analysis 65
microoncoid xx
microoncolite xx
rock xx
microporosity 128
mid-oceanic ridge 40
Milankovitch cycle x, 42, 60
milieu 16
Millepore Bed 25–8, 154, 156
mineralization xv
mining 19, 213
Mössbauer Spectrometry 4
mud-ironstones 213, 215, 219
Namur Synclinorium 65
Nanpan Jiang Basin 35
nODULES 9
phosphatic 214, 216, 218
nomenclature, allochems xix
lithological xviii–xxii
mineralogical xvii, xviii
nontronite xii, 9–12
Northampton Sand Ironstone vii, 108, 113, 175
North Sea 85, 88
Nubia Formation 93–102
nucleus xx, 101
offshore shelf 205
oligotaxic phases x, 34, 44
omission event 69, 107
oncoïd xix, xx, 69, 73, 213–5, 217
oncolite xx
oncoloid xx
rock xx
oolidal x–xii
ooloids, berthierine ix, 40, 72, 148, 151–3
calcareous xvi
calcite-cemented 160
chamosite 80
chlorite 158
‘flax-seed’ type 69, 72
francolite 160
glaucocitic 80
goethitic ix, 133
hematite 149, 156
iron-rich 141, 147
kaolinite 149, 151
morphology xx
pedogenic xi, xiv
pyrite-dominated 161
siderite 151
silica 158
superficial xx
oolids, (origin of)
by mechanical accretion xiii, xiv, 101, 115, 145–6, 149, 151, 153, 167, 172, 183, 209
in soils xiv, 149, 175–90
as microconcretions xiv, 115, 144–5, 167, 172, 209
by replacement of calcareous ooids xiv, 156–8, 187
by crystallization from gel xiv, xv, 145
by mineralization of microfossils xv, 168
in fungal mats, xv, 187
by adsorption processes xv, 137–8
oolite shoals 101
oolites, berthierine 175
‘concentrated’ 51, 93
iron oxide 6
‘lean’ xv, 51, 93
oolith xx, 129
oolitic structure, concentric 165
oolitization 165
oolitoid xx
ooloid xx
rock xx
opal xv
organic, matter xii, xv, 14–5, 19, 20, 25–6, 35, 41, 125, 139
carbon & reduced sulphur (CRS) 35
reactivity 24
oxygen minimum zone 35, 37, 41
pack-ironstones 213–4
palaeogeography 80, 83
palaeohighs 111
palaeolatitudes x
palaeosols 180
Pangaea 39
paper shales 82
Paris Basin 79–83, 88–90, 176
Pco2 15, 39
pedogenesis xi
hydromorphic 183
pellet xix, xx, 81,
peloid xix, xx, 81, 98
Pen y Gaer Ironstone 216
phosphate 57, 59, 100, 160, 171, 215, 235
phosphorites 235, 237
pisoid xi, xix, xx, 72, 136, 177, 180, 188
pisolites xx
lateritic 81
pisolith xx
pisoloid xx
rock xx
Pissot Formation 53–6
plant roots 205
polytaxic phases x, 34, 44
Porto de Santo Anna Formation 53, 58
Postolonnec Formation 53, 55
precipitation 10, 144–5, 151
protooid xx
pseudoooid xx
pyrite xii, xvi, 15, 20–2, 25–6, 28, 57, 158, 161,
214–9, 235
quartz xvi, 16–7, 26, 73, 129, 165
Quartzitic Series 230–3, 238
Raasay Ironstone 157–8, 160
reactions, xvi, 14, 23
oxic xii
postoxic xii
ligand exchange 133, 137
reefs 67
Red Sea 13, 14
regression 67, 80, 88, 209, 213, 239
replacement, of calcareous ooids xiii, xvi, 137
of limestone 19, 20
of echinoderms 158–9
by siderite 160
by calcite 160
Rhenisches Schiefergebirge 65–74
ripple marks 205
Rosan Formation 53, 58
Rosedale Ironstone 149, 160
sabkha 74
Sahara, Algerian 165
salinity xii
sand waves 33–4, 56, 85, 100, 238
Sawdust Sand 99
scanning electron microscopy (SEM) ix, xiii, 68–9,
70–1, 121, 134, 142, 190–1
sea-level fluctuations 39, 77, 100, 105, 239
lowstands 79, 81
Seaway, Western Interior 43
secondary deposits 107
secondary electron imagery (SEI) 142
sedimentary structure 84, 229
sequences, barrier bar 107
coarsening-upward 82, 107, 176, 180, 205, 237
condensed 81, 111
depositional 33
seaward prograding 205
shoaling-upward 34, 41, 80–1
sheath xx, 98, 100, 129
shelf/shelves 65, 80, 204
shoreface 205
siderite xii, xiv, xv, 15–7, 20, 22–3, 27, 57, 126,
142, 158, 160, 171, 181, 214, 217–8, 221, 226
cementation 223
silica 142
Skolithos 95
smectite 12, 17, 23, 73
snuff boxes 111
soils, hydromorphic xiv, xvi, 177
lateritic x, xvi
podzolic 14
terrestrial xiv
spastolith xx, 69, 98, 187–8
chained xx
egg-shell xx, 146
sigmoidal 160
spontaneous spicules 214
stagnation, oceanic 35, 42
starvation (of sediment) xi, xvi, 34, 41, 101, 107–8,
237
stilpnomelane xvi, 214, 219, 229, 231–3, 235, 237,
240
storms 69, 71, 74, 179, 235
stromatolites xv, 56, 186, 215–6
subaerial exposure 82
subsidence 83
sulphides 20, 73, 77
Sverdrup Basin 36, 42, 107
swells xi
syneresis 98
synthesis of iron clay minerals 12
tectonics, events 65, 88, 197–201, 213
syndepositional 86, 219
Teichichnus 95
tempestites 102, 107–8
terminology, mineralogical xvii, xviii
lithological xvii–xxii
terranes, Armorican 51
Avalonian 51
Tethys Himalaya sequence 229–44
Thalassinoides 95
tidal currents 213
tidal influence on deposition 84
Tindouf Basin 165–8, 172, 197–210
trace elements 10–6, 176, 178–9, 188
Index

thorium/uranium ratio 222, 224
thorium/potassium ratio 222, 225–6
transgressions x, 33, 80, 176, 209, 213, 237–8
transgressive lag 69
transgressive-regressive cycles 43, 61, 88, 105, 107, 213
transmission electron microscopy (TEM & ATEM) ix, 121–131, 134
traps 111
Tremadog Ironstone 122, 128, 218–9
tsunami 74, 77
Tully Formation 43

ultrastructure/texture 125, 180
Urville Formation 56, 170–1

vadoliths 180
Verviers Synclinorium 65, 69, 71
volcanism xi, 13, 62, 65, 72, 219

Wacke-ironstones 214–9
Wasta Formation Ironstone 122, 124
weathering xi, 10, 71, 72, 114
chemical 17, 40
diagenetic 74
ferralitic 175, 181
lateritic 14, 81, 108, 149, 175
products 62
tropical 14, 180
Welsh Basin 213
Whitby Mudstone Formation 221
winnowing xv, 108

X-ray analysis/imagery (XRD, XEI, EDS, WDS) 4, 12, 26, 121, 122–3, 134, 143, 146

Zozar Formation 231
Journal of the Geological Society

Chief Editor: M.J. Le Bas

Published bi-monthly, the Journal of the Geological Society enjoys a very wide international circulation and has been published continuously since 1845. It is a leading international organ for significant research in all branches of the geological sciences. It is the medium of choice for publication of work by internationally recognized authorities.

Papers are accepted from both Fellows and non-Fellows. A Short Papers section has been introduced for rapid publication of topical information.

Quarterly Journal of Engineering Geology

Scientific Editor: A.B. Hawkins

This is a journal of the Geological Society with a wide international circulation. Original papers are accepted from Fellows and non-Fellows working in the UK or overseas. The journal is designed for papers which deal with any of the subjects within the field of geology as applied to civil engineering, mining practices and water resources, including rock mechanics and geotechnics. Its wide scope also includes applied sedimentology, pedology, geohydrology and the engineering application of geophysics. Case histories and review articles are also published.

For both the Journal of the Geological Society and the Quarterly Journal of Engineering Geology, typescripts for publication, editorial enquiries and correspondence should be sent to: The Editorial Department, Geological Society Publishing House, Unit 7, Brassmill Enterprise Centre, Brassmill Lane, Bath BA1 3JN. Tel 0225-445046.

Enquiries and business correspondence relating to sales and subscription matters should be sent to: Journals Subscription Department, Geological Society, Burlington House, Piccadilly, London W1V 0JU. Tel: 01-434-9944.

Fellows and other members of the Geological Society enjoy substantial reduction on the price of books published by the Society.

Fellowship dues include a subscription to one of the above mentioned journals or the Journal of Marine and Petroleum Geology (published jointly with Butterworths). Several other journals can be subscribed to by Fellows at substantially reduced cost where the Society has an agreement. Fellowship is open to geologists worldwide; further information is available from the Executive Secretary, Geological Society, Burlington House, Piccadilly, London W1V 0JU.

Geology Today

This journal serves professional geologists wishing to keep abreast of developments in areas outside their own field, as well as amateur geologists, students and their instructors. The Editorial Board selects several articles for each issue on various topics of current interest in both pure and applied geology, to provide both specialists and non-specialists with clear and readable information covering a wide scope. The journal also features shorter notes, news of meetings, exhibitions and field excursions, contributions from foreign correspondents and book reviews.