












et al. 2015). The new ecospace produced by the
trace-makers would have been relatively limited
and only a small net increase in endobenthic nutrient
flux is to be expected, although, compared with the
completely unbioturbated stratigraphic levels of the
Proterozoic, this is likely to be relatively significant
(McIlroy & Logan 1999).

In the succeeding T. pedum ichnozone (Fig. 2), a
greater diversity of ichnotaxa and behaviours is
encountered. Not only do horizontal trace fossils
become more morphologically diverse, with the
appearance of ichnotaxa such as Helminthoidichn-
ites and Psammichnites (used in preference to
Taphrhelminthopsis and Archeonassa, cf. Jensen
2003; Jensen & Palacios 2016), and the arthropod

scratch marks of Monomorphichnus (Fig. 3f; Table
1), but vertical burrows, such as Skolithos, also
appeared for the first time. The dwelling trace Sko-
lithos did not create significant volumes of ecospace
and any bioturbation associated with these burrows
is likely to have been essentially biodiffusive. None-
theless, the depth and abundance of Skolithos bur-
rows in some Early Cambrian successions – often
forming ‘pipe rock’ ichnofabrics (McIlroy & Garton
2004, 2010) – indicates a fundamental change in
infaunal habitats. A greater diversity of functional
groups and the increased generation of ecospace is
implied for the T. pedum ichnozone owing to the
occurrence of more three-dimensional ichnogenera,
most notably the branching, penetrative trace fossils

Fig. 3. Trace fossils from the Ediacaran–Cambrian successions of Fortune Head and Grand Bank, Newfoundland,
Canada: (a) Skolithos annulatus; (b) Gyrolithes polonicus; (c) Treptichnus pedum; (d) Helminthoidichnites isp.;
(e) Planolites isp.; and (f) Monomorphichnus isp. All scale bars 1 cm.
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Treptichnus and Gyrolithes, but also Arenicolites,
which indicate the increasing behavioural complex-
ity of infaunal organisms (Narbonne et al. 1987 and
herein). The diagnostic trace fossil Treptichnus is
widely taken as the first burrow that shows probable
shallow tier gallery diffusion, although it has also
been interpreted as the probing burrow of a carniv-
orous priapulid (Dzik 2005; Vannier et al. 2010).
As such, its EEI value has a range of 7–12.

Although many new horizontal trace fossils
appear in the Rusophycus avalonensis Zone, such
as the geometrical graphoglyptid trace fossil
Squamodictyon – which is considered to represent
shallow gallery diffusion – along with additional
vertical burrows, the functional groups of trace-
makers in this interval appear to have been essen-
tially the same as those of the T. pedum Zone. The
most significant first appearance datums are those
of Teichichnus, and possibly Diplocraterion, which
allow the inference of the evolution of vertical and
horizontal biodiffusion, upward- and downward-
conveying and regeneration (Table 1; McIlroy &
Logan 1999). Teichichnus has its first reliable oc-
currence at around the base of Cambrian Stage 2
(Landing et al. 1988; McIlroy & Brasier 2016),
but purported Diplocraterion (Narbonne et al.
1987), which can be difficult to distinguish from
cross-sections of Teichichnus, could not be con-
firmed in this study.

Discussion

Although the diagnostically Lower Cambrian ichno-
taxon T. pedum has a relatively wide range of poten-
tial EEI values, depending on the interpretation of
the behaviour of the trace-maker (Table 1), it
might not have been the trace fossil with the highest
ecosystem impact. Ichnotaxa such as Teichichnus
have a narrower range of EEI values and their trace-
makers can be interpreted more confidently as
higher impact ecosystem engineers. Nonetheless,
the effects of Treptichnus and similar trace fossils
on the Cambrian seafloor should be seen in the
context of change relative to the minimal ecosys-
tem engineering potential of the latest Ediacaran
trace fossil assemblages. When viewed in this man-
ner, it is clear that T. pedum and similar trace fos-
sils are likely to have had a profound effect on the
marine ecosystem. Our assessment of the ichnology
of the Chapel Island Formation suggests that most,
if not all, of the major functional groups of mod-
ern bioturbators appear to have evolved by the
base of Cambrian Stage 2 in the Global Stratotype
Section – that is, within the first 12 million years
of the Phanerozoic (corroborated by findings from
northern Norway by McIlroy & Brasier 2016).

It is well known that matground facies per-
sisted locally in marine environments into the Silu-
rian (e.g. Tarhan et al. 2015), but they did so in

Fig. 4. Trace fossils from the Ediacaran–Cambrian successions of Fortune Head and Grand Bank, Newfoundland,
Canada: (a) Palaeophycus isp.; (b) Gordia isp.; (c) ?Psammichnites isp.; (d) Teichichnus isp.; and
(e) ?Thalassinoides isp. Scale bars in parts (a), (b) and (d) 1 cm and in parts (c) and (e) 5 cm.
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increasingly restricted, commonly nutrient-starved
sedimentary environments (Harazim et al. 2013;
McMahon et al. 2016). This marginalization of the
matground ecosystem to environments with eco-
logically harsh conditions, such as brackish and
freshwater facies, reflects the effects of the Cam-
brian-style ecosystem engineering bioturbators that
gradually shaped the marine realm toward its
modern state.

As with any ichnological study that requires
the functional interpretation of trace fossils, there
is always some ambiguity as to the life activity of
the trace-maker, indeed many modern burrows
can reflect a diverse range of behaviours that can
change due to ontogenetic or palaeoenvironmental
controls as well as ecosystem engineering (Herring-
shaw et al. 2010). The accuracy/importance of the
functional groups assigned to the ichnotaxa has
significant potential bearing on their EEI value.
We addressed this issue by assigning a potential
range of ecosystem impacts to some trace fossils,
which affects the EEI value (i.e. their inferred sig-
nificance as ecosystem engineers). The magnitude
of the impact that a burrowing organism has on its
environment should be considered in the context
of its stratigraphic level and whether the sedimen-
tary environment it occurred in was diffusion- or
advection-dominated.

Ecosystem engineering of fine-grained

Cambrian sediments

Bioirrigating organisms that construct networks or
galleries in fine-grained sediments (mud and silt)
create a greater contrast to natural sedimentary flow
conditions than those that burrow in sands (cf.
Mermillod-Blondin & Rosenberg 2006; Meysman
et al. 2006). The shallow, narrow, vertical tube Sko-
lithos (Fig. 3a) and the similar, but spiralling, Gyro-
lithes (Fig. 3b), first encountered in the T. pedum
ichnozone of the Early Cambrian (Fig. 2), are blind-
ended subvertical burrows, whose trace-makers
may well have bioirrigated their burrows. The evo-
lution of such behaviour would have had a particu-
larly profound impact on infaunal ecosystems,
particularly in terms of microbial and meiofaunal
activity in the near-burrow zone (cf. Reise 1981;
McIlroy & Logan 1999). As such, morphologically
comparable ichnotaxa found in early Phanerozoic
mudstones and siltstones, which would have been
diffusive sedimentary environments, are of greater
significance than those found in sandstones, which
are likely to have been advective.

Ecosystem engineering in coarse-grained

Cambrian sediments

In coarser grained Lower Cambrian successions,
from about the base of Cambrian Stage 3, the

vertical tubular trace fossil Skolithos is commonly
found in composite ichnofabrics, sometimes in
very high densities (up to 7500 burrows/m2, Davies
et al. 2009) that may have been due to very dense
assemblages of organisms in the typical ‘pipe
rock’ biotope (McIlroy & Garton 2004, 2010).
High densities of burrowing organisms may have
increased the sedimentary impacts of such simple
burrows (cf. Miron et al. 1992; Volkenborn &
Reise 2006; Herringshaw et al. 2010), but their
potential for ecosystem engineering is likely to
have been low because the sandy sediments in
which they formed would already have had advec-
tive flow through them. The impact of Skolithos
on sediments and nutrients is likely to have been
restricted to upward-conveying, arguably during
burrow excavation only, with associated biodiffu-
sion and possibly downward-conveying during the
period that the burrow was inhabited. The amensal-
ism that might have resulted from dense assem-
blages of vertical burrow dwellers that is evident
in the low diversity of pipe rock facies is difficult
to prove owing to the palimpsesting of assemblages
(McIlroy & Garton 2010).

Comparison of ichnological trends with other

Lower Cambrian successions

The trends indicated by the ichnological data from
the Chapel Island Formation are augmented by con-
temporaneous successions bearing trace fossils
elsewhere. In western Mongolia, the Ediacaran–
Cambrian transition is preserved in a mixed car-
bonate–siliciclastic succession with a trace fossil
fauna showing similar patterns to those observed
in Newfoundland (Goldring & Jensen 1996). Ques-
tionable short vertical and horizontal burrows are
described from the latest Ediacaran Tsagaan
Oloom Formation (Goldring & Jensen 1996; Kho-
mentovsky & Gibsher 1996; Brasier et al. 1997),
while the ichnogenera Didymaulichnus, Helmin-
thoidichnites and Planolites were described from
the earliest Cambrian Bayan Gol Formation. These
simple, bedding-parallel ichnotaxa are morpho-
logically and behaviourally comparable with those
of the H. podolica assemblage Zone of Newfound-
land. The overlying unit of the Bayan Gol Forma-
tion contains these taxa, as well as Cochlichnus,
Homosiroidea (probably a taphomorph of T.
pedum), Palaeophycus, Phycodes (?Trichophycus)
and Treptichnus. As with the trace fossil assemblage
of the T. pedum assemblage Zone of Newfoundland
(Fig. 2; Geyer & Landing 2016), the upper unit
includes increasingly complex burrow morpholo-
gies. Trace fossils in the Mongolian successions
therefore show progressively greater vertical depths
of burrow penetration, and an increasing abundance
of burrows that are inferred to have been created for
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shallow gallery diffusion, through the Lower Cam-
brian succession.

The Ediacaran–Cambrian succession of lower
shoreface–offshore transition zone sediments in
western Canada also show comparable ichnological
patterns to those of the Chapel Island Formation
(MacNaughton & Narbonne 1999; Carbone & Nar-
bonne 2014), which might be elucidated further
from this type of ecological assessment. In a review
of Proterozoic–Cambrian ichnology, Jensen (2003)
described the increase in morphological and behav-
ioural complexity across the Ediacaran–Cambrian
boundary, noting trends that are very similar to
the specific patterns described herein from the
GSSP. This stratigraphic trend toward both increas-
ing diversity and behavioural complexity is consis-
tently found in Ediacaran to Lower Cambrian
siliciclastic sediments around the world (Gehling
et al. 2001; Geyer & Landing 2016; McIlroy &
Brasier 2016). Some Ediacaran to Cambrian sec-
tions have been considered to have Cambrian-type
trace fossils slightly below the Cambrian boundary
and overlapping with the Ediacaran biota (e.g. Jen-
sen & Runnegar 2005; Darroch et al. 2015). The
precise level at which trace fossils of Cambrian
aspect appear is significant for global correlations,
but it is perhaps to be expected that the event was
somewhat diachronous. This does not detract from
the fact that this emerging biota fundamentally
changed the marine realm and that its development
occurred globally within a geologically short inter-
val of time.

In comparison with later Phanerozoic succes-
sions, one of the distinctive aspects of the Lower
Cambrian is that most burrows were small and did
not penetrate deeply into the sediment. Even though
vertical bioturbation evolved in the late Ediacaran,
it was not until the Cambro-Ordovician that sig-
nificantly larger, deeper gallery networks such as
Thalassinoides became prevalent (Sheehan &
Schiefelbein 1984; Myrow 1995). The stratigraphi-
cally lowest Thalassinoides s.s. are known from the
Cambrian Stage 3 of Finnmark, Norway (McIlroy &
Brasier 2016), but are – much like the ?Thalassi-
noides figured herein (Fig. 4e) – comparatively
shallow tier relative to later Palaeozoic and younger
examples (Myrow 1995).

Conclusion

In terms of the ecospace they created, the likely
nutrient flux they generated and the probability
that they bioirrigated the burrow systems, the trace-
makers of Treptichnus would have been high-
impact Early Cambrian ecosystem engineers. This
is especially true when taken in the context of the
probable ecological impact of Ediacaran trace

fossils, which is likely to have been low. T. pedum
is therefore unquestionably an important ichnotaxon
for stratigraphic purposes because its first occur-
rence represents a major change in the seafloor eco-
systems relative to those of the Ediacaran, but it is
not the Early Cambrian trace fossil that is likely to
have had the greatest EEI value.

The trace-makers of the diagnostically Cambrian
deeper penetrative trace fossils Gyrolithes and the
deposit-feeding burrow Teichichnus were poten-
tially more significant ecosystem engineers than
T. pedum. By comparison with modern burrows
similar to these ichnotaxa (e.g. Dworschak & Rodri-
gues 1997; Gingras et al. 1999), we consider that
both Gyrolithes and Teichichnus are likely to have
been multifunctional, with the trace-maker occupy-
ing the same position for significant periods of time
while bioirrigating the sediment. The spreiten bur-
row Teichichnus may have been particularly high
impact because it is associated with the highest
ichnofabric indices and deepest tiering in Early
Cambrian successions (McIlroy & Logan 1999).
The presence of spreiten in Teichichnus indicates
bulk sediment processing behaviour during a rela-
tively protracted period of burrow occupation. The
trace-maker is likely to have bioirrigated the sedi-
ment – suggesting that the Teichichnus trace-maker
was an engineer of new ecospace that caused signif-
icant biogenic particle flux. Its occurrence at about
the base of Cambrian Stage 2, and its abundance
in siliciclastic deposits of Cambrian age (Landing
et al. 1988; McIlroy & Brasier 2016), make it a
potentially useful marker for Cambrian Stage 2 in
facies without small shelly fossils.

The trace fossil assemblage that marks the base
of the Cambrian in the GSSP is herein demon-
strated to result from the actions of animals that
interacted with the seafloor much more signifi-
cantly than their Ediacaran counterparts. Nonethe-
less, there are aspects of the sedimentary facies
that need to be isolated from those of stratigraphy
and evolution. It appears that, close to the boundary
level, the first pervasive bioturbators evolved, with
composite ichnofabrics of cf. Gyrolithes being
common in the offshore facies and shallow tier
Treptichnus-dominated assemblages occurring in
association with fair weather mudstones in high-
energy, lower shoreface facies, both in the GSSP
(herein) and in Norway (McIlroy & Brasier 2016).
The changes in microbial nutrient cycling that are
likely to have accompanied the first bioturbators
(McIlroy & Logan 1999) provide evidence to sug-
gest that complex animals did indeed engineer the
Cambrian explosion, irrevocably changing the bio-
geochemistry of sediments, porewaters and oceans
alike (Brasier & McIlroy 1998; McIlroy & Logan
1999; Canfield & Farquhar 2009). Our work further
refines that conclusion and identifies the basal
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Cambrian ichnogenera/ecosystem engineers that
are likely to have had the most impact at this time.

Martin Brasier, whose help and guidance stimulated and
encouraged our interest in the ichnology of the Edia-
caran–Cambrian of Newfoundland, is remembered with
fondness and appreciation by us all. Support for this
research came from NERC and an NSERC discovery
grant to DMcI. This manuscript benefited greatly from
the thoughtful and constructive reviews of Martin Solan
and a second, anonymous, reviewer.
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