






There are at least two major groups of non-
basaltic volcanoes that can be viewed as monoge-
netic: (1) volcanoes that erupt in continental settings
through thick continental crust, such as those in
western Arabia (Camp et al. 1991); and (2) volca-
noes that, in some degree, show an association
with a shallow magma source feeding large-volume,
commonly caldera volcanism, such as the Long
Valley Caldera (Hildreth 2004) (Fig. 6). A typical
scenario for this later group of small volcanoes are
those that are fed by a small-volume melts released
between major caldera-forming events and inferred

to be fed from the same major magmatic sources
associated with the main complex and polygenetic
volcanic network. Those volcanoes that clearly
show an individual feeding network that taps the
deeper zones of a magmatic system seem to be asso-
ciated with volcanic fields that were active over a
long time, allowing the capture of magma in the
thick crust and its evolution to more silicic compo-
sitions. Here, we suggest that in spite of the different
magmatic plumbing system associated with these
volcanoes, the result on the surface can be very sim-
ilar in terms of their volcanic architecture. The

Fig. 8. Non-basaltic monogenetic volcanoes: (a) trachytic lava dome (Dabaal Al Shamali) next to a small explosion
crater surrounded by a thin tephra ring (Gura 1) from the Harrat Rahat in Saudi Arabia; (b) rhyolitic/rhyodacitic
lava dome field near the Erciyes volcano; (c) rhyolitic/rhyodacitic lava dome in a maar/tuff ring of Acigöl in
Cappadocia, Turkey; and (d) the 14 kyr-old Puketerata rhyodacitic tuff ring and lava dome.
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separation of these volcanoes from other volcanoes
with long-lived and stabile feeding systems is
important not only from a volcanic hazard perspec-
tive in young volcanic regions, but also from min-
eral exploration aspects in older settings where the
edifices might be largely removed due to erosion
and there is access to their upper conduit zones com-
monly associated with mineralization. The facies
architecture of such exposed plumbing systems of
non-basaltic monogenetic volcanism is the key to
understanding the overall magma-release processes
through individual magma-feeding networks that
operate under small supply volume conditions. This
situation is clearly different from those systems that
have a driving mechanism associated with a larger
volume magma supply, and a broader and more
interconnected plumbing network that can retain
heat long enough to generate heat to drive a geother-
mal mineralization system.

Eruption style variation: the ‘competition’

between the magmatic system and the

environment

The style of volcanic eruptions in small-volume
monogenetic volcanic fields is strongly dependent
on the relative influence of internal magmatic (e.g.
magmatic volatiles, chemical composition and vis-
cosity) and environmental factors (e.g. the presence
of external water, host sediment physical con-
ditions and fractures) (Németh 2010; Németh &
Kereszturi 2015). Essentially, this can be expressed
as a ‘competition’ between the magmatic system
and the near-surface environment encountered by
the rising magma (Fig. 4). In most cases, the vol-
umes of magma batches that feed monogenetic vol-
canoes are well below 1 km3 (closer to 0.01 km3),
and the balance between magmatic and environ-
mental factors can be very sensitive (Kereszturi
et al. 2013, 2014).

In a very simplified model, if magmatic
volumes are larger (i.e. increasing heat and potential
energy ‘stored’ in the rising magma), the system
can overwhelm the external environment to produce
a dominantly magmatic eruption, and typically
Hawaiian–Strombolian eruption styles constructing
spatter and scoria cones (Kereszturi & Németh
2012a; Kereszturi et al. 2014). For smaller magma
volumes, and potentially lower magmatic flux and
therefore eruption rates, external environmental fac-
tors will dominate the course of the volcanic erup-
tions to produce phreatomagmatic eruption styles
and associated pyroclastic deposits (Kereszturi
et al. 2014). The systematic nature of these pro-
cesses is commonly observed in the basal pyro-
clastic succession of monogenetic cones (Fig. 5a).
In the initial pyroclastic succession of cones that

were produced in an environment where a mini-
mal amount of external water (surface or fracture
stored) was available, a thin (metre scale as a
maximum) phreatomagmatic pyroclastic deposit
always appeared (Murcia et al. 2015) (Fig. 7). Sim-
ilarly, if the magma supply rate drops, a short-lived
phreatomagmatic blast can produce a thin pyro-
clastic deposit indicating that the eruption style
has changed due to changes in the magma rise
rate and the access of external water to the rising
magma. These processes can leave a dominant tex-
tural feature in the pyroclastic succession that may
give an impression of major changes in the erup-
tion; however, these changes were caused only by
the subtle interaction between the external and inter-
nal controlling parameters of the eruption.

Changes in the magma rise rate, magma volume
and environmental conditions causes changes in
eruption style, leading to cyclical activity patterns.
Such trends have recently been documented in a
number of volcanic fields (Martin & Németh
2005; van Otterloo et al. 2013; Agustin-Flores
et al. 2014, 2015). For example, in the Auckland
Volcanic Field in New Zealand, magma volumes
vary by orders of magnitude (0.01–1 km2) and
there are widely variable conditions of water avail-
ability, and as a result there is a wide range of erup-
tion styles in contrast to volcano fields which occur
in relatively dry conditions or where magma vol-
umes are larger (Kereszturi et al. 2014). Low
magma volumes and the availability of near-surface
water in the Auckland Volcanic Field have played
a major part in determining eruption styles, and as
a consequence about 75% of the volcanic cones
were initiated by a significant explosive phreato-
magmatic eruptive phase (Kereszturi et al. 2014).
Recent studies imply that the relative influence of
the magma system and environmental factors can
be calculated and integrated into a relatively simple
numerical model that can be viewed as the eruption
style formula of this specific field (Kereszturi
et al. 2017); similar expressions can be derived for
other monogenetic magmatic systems.

The environmental influence on a monogenetic
volcanic eruption can fundamentally change the
potential volcanic hazard from a relatively moderate
explosive eruption style that can require a particu-
lar type of response to a more violent, phreatomag-
matic style that requires a quite different response
(Lorenz 2007; Németh et al. 2012).

The interplay between the internal v. external
parameters that influence the eruption style of small-
volume volcanoes can also vary over longer time
periods. Typical volcanic fields with more than a
dozen volcanic edifices commonly formed over
tens of thousands to millions of years, such as the
Wudalianchi in NE China which has 14 volcanoes
in the past 2.1 myr (Gao et al. 2013). However,
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there are also volcanic fields that formed over tens of
millions of years but in these there are generally
clearly defined periods of eruptive activity: for
example, many of the mature volcanic fields in the
Arabian Peninsula (Camp & Roobol 1992; Moufti
et al. 2012) or in Australia (Boyce 2013).

The consequences of a long lifespan of a
monogenetic volcanic field is that the eruption styles
preserved in the geological record can carry impor-
tant information on the environmental conditions
that prevailed during the time frame of the field. Cli-
mate changes can provoke changes in the surface
and subsurface hydrogeology of a region, and this
is one of the single most important external factors
that can influence the eruptions style. For example,
this has been demonstrated in the Bakony–Balaton
Highland Volcanic Field in Hungary, a basaltic
intraplate field that produced at least 35 volcanic
edifices over a nearly 6 myr time period between
8 and 2.3 Ma (Wijbrans et al. 2007); volcanoes
dominated by phreatomagmatism are clearly more
abundant at a time when palaeoclimatic data indi-
cate more humid and wet periods (Kereszturi et al.
2011). Similar trends have also been suggested
from the Trans-Mexican Volcanic Belt (Siebe
1986) and from the Arabian Peninsula (Moufti
et al. 2015). While these ideas are logical, so far
no systematic studies have been carried out in
other fields with longer time spans.

Similarly several studies have demonstrated a
potential link between wet periods characterized by
saturated subsurface aquifer conditions and more
environmentally dominated eruption styles (Siebe &
Salinas 2014; Kshirsagar et al. 2015, 2016). Some
workers have suggested the influence of large plu-
vial or inland lakes where basaltic magma rise is
ongoing over millions of years. Such a situation
has been demonstrated along the western Snake
River, where shallow subaqueous volcanoes formed
along the margins of a large inland lake (Godchaux
& Bonnichsen 2002). With a reduction in the
surface area of the lake, the younger Surtseyan
volcanoes tend to be confined more towards the
present-day axis of the modern western Snake
River (Godchaux et al. 1992; Brand & White
2007). Palaeolake-level changes and their influence
on the eruption styles of rising magma has also be
recorded along Lake Kivu, where the location of
Surtseyan and phreatomagmatic volcanoes seems
to correlate well with the changing location of
the palaeoshoreline of the lake (Capaccioni et al.
2003; Ross et al. 2014, 2015). Similar examples
have been reported from Anatolia (Keller 1975)
and in several intra-mountain basins in the Basin
and Range region of the western USA (White 1990,
1996). It is very likely that the influence of large
lacustrine basin evolutions in Central Asia, North
Africa and across the Arabian Peninsula influenced

the style of volcanism: however, so far, systematic
studies have not been performed in this regard.

Volcanosedimentary response and

preservation potential

Monogenetic volcanic fields are composed of indi-
vidual small-volume volcanic edifices, each with a
relatively simple upper conduit–crater–vent sys-
tem, that are normally spaced from each other at dis-
tances longer than their edifice base diameter. The
small volume of magma involved and the variable
external conditions influence the style of eruption
and determine the variety of associated eruptive
deposits. Where magma volumes are low and envi-
ronmental conditions wet, phreatomagmatic erup-
tion styles may prevail over the entire duration of
the growth of a single volcano. Such explosive erup-
tions are expected to produce tephra deposits
extending over several tens of kilometres from
their source. In spite of the low magma volume,
such volcanoes can produce reasonable-sized volca-
noes because of the relatively large volume of coun-
try rock that is ‘recycled’ as non-volcanic pyroclasts
(Németh et al. 2012). In such environmentally con-
trolled eruptions, the ‘footprint’ of each cone is rel-
atively large and tephra deposits relatively extensive
(Németh et al. 2012). While these tephra blankets
are normally thin and their preservation potential
low, the volcanic field will be dominated by large
numbers of depressions (craters) that then can act
as small sedimentary basins to ‘harvest’ ash from
other sources (White 1991). Such volcanic fields
can quickly lose their volcanic appearance due to
vegetation cover and extensive erosion of the rela-
tively small volcanic edifices. If a volcanic field is
active over a long time and the magma production
rate large, the sedimentary contribution to the terres-
trial record can be significant and may be preserved
over a longer time as part of the continental sedi-
mentary successions (Manville et al. 2009; Martin-
Serrano et al. 2009).

The preservation potential of the volcanic erup-
tive products of phreatomagmatic-dominated volca-
nic fields is unknown in the long term. While craters
are excellent sites to host tephra records, commonly
the only record of the existence of such volcanic
fields in the geological past is the exposed diatreme
associated with maar volcanoes. The information
that can be gained from diatremes is, however,
restricted to the understanding of the individual vol-
cano and cannot be used for correlative purposes to
refine the eruption history of the volcanic field as a
whole (White & Ross 2011). In addition, because
diatremes are pyroclast-accumulation zones where
individual explosive events excavated and recycled
pyroclasts, it is a significant challenge to establish
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the original eruptive volume of the volcano and,
hence, establish its fundamentally monogenetic
origin (White & Ross 2011). This problem has
recently been demonstrated through careful exami-
nation of some kimberlite-bearing diatremes and
other mafic diatremes (Kurszlaukis & Fulop 2013;
Fulop & Kurszlaukis 2014). In eastern Germany,
some diatremes recorded eruptive products found
to be millions of years apart, apparently hosted in
the same narrow and well-defined pipe-like fea-
tures normally interpreted to be the result of a single
monogenetic volcanic eruption under wet – envi-
ronmentally controlled – conditions (Suhr & Goth
2009; Buechner et al. 2015). A similar scenario
has also been recorded in several kimberlite pipes,
where clear geochemical, age and textural evidence
showed that a single pipe can host multiple ‘zones’
formed in separate events in a kind of a compound
monogenetic scenario (Kurszlaukis & Barnett
2003; Barnett 2008). It seems that, for some reason,
these pipes functioned as volcanic conduits for suc-
cessive monogenetic eruptive events separated by
long time periods, commonly reaching the range
of the total lifespan of the entire volcanic field
they belong to.

It appears that there are a large number of
phreatomagmatic-dominant monogenetic volcanic
fields, especially in coastal areas, large intra-
continental lacustrine basins or just in well-drained
areas with a good groundwater network. Although
such conditions favour phreatomagmatism in the
evolution of the volcanic field, it is rare that there
is no variation in the eruption style from volcano
to volcano across the field. If the volcanic field
operates with elevated magma output rates and
potentially higher magma flux rates, most of the vol-
canoes of the field, even if they have dominantly
phreatomagmatic early phases, reach purely mag-
matic explosive and/or effusive conditions in their
later stages. such as has been demonstrated from
the Auckland Volcanic Field in New Zealand (Ker-
eszturi et al. 2014).

Volcanic fields where the eruptions are domi-
nated by magmatic (dry) conditions are composed
of numerous scoria and spatter cones, and lava
flows and fields. The pyroclast-preservation poten-
tial of such fields can be long in arid conditions;
however, in humid climates, such cones can vanish
over tens of thousands of years. It is inferred that
degradation of scoria cones follows a regular pat-
tern: hence, such cones can be used for relative
age dating (Wood 1980; Fornaciai et al. 2012).
However, recent studies demonstrated that such
methods need to be treated carefully as the syn-
eruptive processes might have a larger impact on
the cone architecture and their degradation than it
is commonly thought (Kereszturi et al. 2012; Ker-
eszturi & Németh 2012b).

Conclusion

The concept of monogenetic and polygenetic volca-
noes is usefully applied to the spectrum of volcanic
systems from small to large. Monogenetic volca-
noes are defined by small magma volumes, short
eruptive periods and dispersed plumbing, although
the magmatic systems to which they belong may
be long lived. The characteristic expression of
monogenetic volcanic systems is as fields of small
volcanic cones.

An important feature of basaltic monogenetic
volcanic systems is that observed patterns of com-
positional variation are commonly linked to differ-
entiation processes that have occurred at high
pressures close to their sources or to differential par-
tial melting in their mantle sources. This illustrates
the close link between magma sources and the erup-
tion of magma at the Earth’s surface, which points to
rapid rise rates and little interaction with the rocks
through which the magma rises – an important dis-
tinction from polygenetic systems.

There is a clear separation of monogenetic sys-
tems from the basalt-dominated volcano fields
which are linked to deep hot mantle sources and
fields where there are significant amounts of
evolved compositions that are related to processes
operating at crustal depths. Small-volume volcanoes
with a significant proportion of evolved composi-
tions are related to systems which have a high
magma supply rate where magmas have stalled
within the crust and fractionation processes have
led to the evolved compositions. These volcanoes
represent a transition towards the complex edifices
that characterize polygenetic volcanic systems.

An important concept that links the nature of the
magmatic system to the environment in which mag-
mas erupt at the Earth’s surface is one of a compe-
tition between the rising magma and the nature of
the eruptive environment. Where the system domi-
nates, magmatic eruption styles (Hawaiian, Strom-
bolian, effusive) create scoria cones and lava flows
in what can be termed ‘dry’ conditions. In contrast,
where the environment dominates and the availabil-
ity of water profoundly influences the behaviour
of erupting magma, eruption styles are dominated
by phreatomagmatism, and the production of tuff
cones, tuff rings and maars.

Small-scale magmatic systems, commonly ex-
pressed at the surface of the Earth, represent the
rise of small-volume batches of magma into spa-
tially restricted domains. Although individual
magma batches are small, this is the most wide-
spread form of volcanism on Earth. The mono-
genetic volcanoes which are a feature of such
systems provide a unique window into processes
in the upper mantle that give rise to magmas. Further
understanding their behaviour underpins hazard
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scenarios where human activities impinge on their
existence.

A snapshot of current advances in research

on monogenetic volcanism

Small-scale volcanic systems expressed at the
Earth’s surface as fields of small volcanoes are
the most widespread form of volcanic activity on
the planet. Because individual volcanoes in these
fields are typically formed during a temporally
restricted period of time, the term monogenetic
has become a useful descriptor for this type of vol-
canism, although it is not one that is universally
accepted. Monogenetic volcanism has received a
lot of attention in recent years, partly because the
small scale of their associated magmatic systems
enables the preservation of unique petrological fea-
tures and provides a ‘window’ into the processes
that produce their magmas, because the details of
their volcanic processes are readily interpreted and
also because, despite their small scale, there is a
realization that many communities worldwide are
vulnerable to the effects of future volcanic activity.

This Special Publication has arisen from the
activities and discussions at workshops and confer-
ences during recent years, including the Interna-
tional Maar Conferences, the commemorative
250 year anniversary on the Jorullo scoria cone
eruption, various thematic sessions on monogenetic
volcanism offered in major volcanological con-
gresses such as the International Association of
Volcanology and Chemistry of the Earth’s Interior
Scientific Assembly, the General Assemblies of
the International Union of Geodesy and Geophysics,
the Geomorphological World Congresses, the
American Geophysical Union meetings, and several
regional workshops. This volume is not intended as
a comprehensive volume on the nature of monoge-
netic volcanism but, rather, is a snapshot of the cur-
rent state of research into this important type of
volcanic activity. The diverse nature of research
into monogenetic volcanism during the past decade,
together with the far-reaching outcomes that have
resulted, demonstrates that a unified definition and
understanding of the processes that drive monoge-
netic volcanism is not yet available.

In this introductory chapter we have reviewed
the current state of understanding of the chemistry
and volcanology of monogenetic volcanic fields.
The following chapters deal mainly with the volca-
nological aspects of monogenetic volcanism, the
way that volcanic cones grow through various erup-
tive processes (Bemis & Ferencz 2017; Lorenz
et al. 2016) and the relationships that these have to
the immediate underlying conduit (Kurszlaukis &
Lorenz 2016).

An important aspect of the study of monogenetic
volcanic systems has been the way that an under-
standing of their behaviour has been built on
detailed studies of systems in widely dispersed
localities and in a wide variety of geological and
tectonic environments. Much of this volume has
been devoted to presenting the current perspective
of volcanism in different parts of the world. Cas
et al. (2016) and Murcia et al. (2016) describe
regional-scale studies of the western Victorian
(Australia) province and the northern part of Harrat
Rahat in Saudi Arabia. Fulop & Kurszlaukis
(2016) present the results of a study of a kimberlite
pipe in Ontario, highlighting the complexity of a
kimberlite pipe reflecting the potential rejuvena-
tion of volcanism in the exact same location and
producing texturally and chemically complex diat-
remes. There follows chapters on several small-
scale monogenetic fields in Mexico (Alvarez et al.
2017a, b; Aranda-Gómez et al. 2016; Saucedo
et al. 2017), Argentina (Báez et al. 2016; Maro &
Caffe 2016b) and Colombia (Borrero et al. 2016).
These serve as an illustration of the importance of
individual studies in different settings from around
the world.

This paper is result of discussions with many colleagues
across the globe. Discussion sessions during the past and
recent International Maar conferences were particularly
stimulating. Many aspects of the researches resulted in
this review were funded by various agencies such as the
Massey University Research Funds (2016), and New
Zealand National Hazard Platform Project. Reviewers’
comments by Xavier Bolos and Philip T. Leat were greatly
appreciated.
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 by guest on January 22, 2019http://sp.lyellcollection.org/Downloaded from 

https://doi.org/10.1144/SP446.7
https://doi.org/10.1144/SP446.7
https://doi.org/10.1144/SP446.7
http://sp.lyellcollection.org/


Hildreth, W. 2004. Volcanological perspectives on Long
Valley, Mammoth Mountain, and Mono Craters: sev-
eral contiguous but discrete systems. Journal of Volca-
nology and Geothermal Research, 136, 169–198.

Hintz, A.R. & Valentine, G.A. 2012. Complex plumb-
ing of monogenetic scoria cones: new insights from
the Lunar Crater Volcanic Field (Nevada, USA). Jour-
nal of Volcanology and Geothermal Research, 239,
19–32.

Hirschmann, M.M., Kogiso, T., Baker, M.B. & Stolper,
E.M. 2003. Alkalic magmas generated by partial melt-
ing of garnet pyroxenite. Geology, 31, 481–484.

Ho, C.H. 1991. Time trend analysis of basaltic volcanism
for the Yucca Mountain site. Journal of Volcanology
and Geothermal Research, 46, 61–72.

Houghton, B.F., Lloyd, E.F., Wilson, C.J.N. & Lan-

phere, M.A. 1991. K–Ar ages from the Western
Dome Belt and associated rhyolitic lavas in the
Maroa Taupo area, Taupo Volcanic Zone, New Zea-
land. New Zealand Journal of Geology and Geophys-
ics, 34, 99–101.

Howell, J.K., White, S.M. & Bohnenstiehl, D.R.
2012. A modified basal outlining algorithm for identi-
fying topographic highs in gridded elevation data, part
2: application to Springerville Volcanic Field. Comput-
ers & Geosciences, 49, 315–322.

Hsu, C.N. & Chen, J.C. 1998. Geochemistry of late Ceno-
zoic basalts from Wudalianchi and Jingpohu areas,
Heilongjiang Province, northeast China. Journal of
Asian Earth Sciences, 16, 385–405.

Irving, A.J. & Green, D.H. 2008. Phase relationships of
hydrous alkalic magmas at high pressures: production
of nepheline hawaiitic to mugearitic liquids by
amphibole-dominated fractional crystallization within
the lithospheric mantle. Journal of Petrology, 49,
741–756.

Irving, A.J. & Price, R.C. 1981. Geochemistry and evolu-
tion of lherzolite-bearing phonolitic lavas from Nige-
ria, Australia, East Germany and New Zealand.
Geochimica et Cosmochimica Acta, 45, 1309–1320.

Johnson, E., Wallace, P., Chashman, K., Granados,
H.D. & Kent, A. 2008. Magmatic volatile contents
and degassing-induced crystallization at Volcán Jor-
ullo, Mexico: implications for melt evolution and the
plumbing systems of monogenetic volcanoes. Earth
and Planetary Science Letters, 269, 478–487.

Jordan, S.C., Cas, R.A.F. & Hayman, P.C. 2013. The ori-
gin of a large (.3 km) maar volcano by coalescence of
multiple shallow craters: Lake Purrumbete maar,
southeastern Australia. Journal of Volcanology and
Geothermal Research, 254, 5–22.

Jordan, S.C., Jowitt, S.M. & Cas, R.A.F. 2015. Origin of
temporal–compositional variations during the erup-
tion of Lake Purrumbete Maar, Newer Volcanics Prov-
ince, southeastern Australia. Bulletin of Volcanology,
77, 883.

Kazanci, N., Gevrek, A.I. & Varol, B. 1995. Facies
changes and high calorific peat formation in a Quater-
nary maar lake, Central Anatolia, Turkey – the possi-
ble role of geothermal processes in a closed lacustrine
basin. Sedimentary Geology, 94, 255–266.

Keller, J. 1975. Quaternary maar volcanism near Karapi-
nar in central Anatolia. Bulletin Volcanologique, 38,
378–396.

Kereszturi, G. & Németh, K. 2012a. Monogenetic
basaltic volcanoes: genetic classification, growth, geo-
morphology and degradation. In: Németh, K. (ed.)
Updates in Volcanology – New Advances in Under-
standing Volcanic Systems. inTech Open, Rijeka, Cro-
atia, 3–88, https://doi.org/10.5772/51387

Kereszturi, G. & Németh, K. 2012b. Structural and mor-
phometric irregularities of eroded Pliocene scoria
cones at the Bakony–Balaton Highland Volcanic
Field, Hungary. Geomorphology, 136, 45–58.

Kereszturi, G. & Németh, K. 2016. Post-eruptive sedi-
ment transport and surface processes on unvegetated
volcanic hillslopes – a case study of Black Tank scoria
cone, Cima Volcanic Field, California. Geomorphol-
ogy, 267, 59–75.

Kereszturi, G., Németh, K., Csillag, G., Balogh, K. &
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