Index

Page numbers in *italics* refer to Figures; page numbers in **bold** refer to Tables.

- acoustic emission 7
 technique 90, 91–92
- amplitude variation with offset anisotropy (AVOA) 193
- Anko H (Japan) 145–147
 see also Median Tectonic Line
- arenite *see* sandstone
- axial splitting 61
- axisymmetric triaxial compression in sandstone 90, 95
 experimental testing
 - lab methods 90
 - lab results
 - acoustic emission 91–92
 - macroscopic observations 92
 - stress/strain behaviour 90–91
 - microscopic methods 92–93
 - microscopic results
 - deformed 94–97
 - pristine 93–94
 - stereology 97–100
 - results discussed 100–101
- axisymmetric triaxial testing 49, 54, 57, 60, 61, 65–69
- Base Cretaceous Unconformity, North Sea 106
- Bassin du Sud-Est (France) 20, 21
 deformation bands
 - distribution 20, 22, 23–24
 - and fault evolution 30
 - growth 29–30
 faults
 - distribution 24–25, 29
 - orientation 27–28, 29
 - thickness 25–27
 modelling of fluid pressure rise and deformation
 - Coulomb plasticity softening 36–37
 - mechanical context 33–36
 - model description 40–43
 - model evolution 31–33
 - model results 37–39
- Beaucaire Marl 48
 strain testing 62–64
- bending *see* poro-plastic deformation
- Berea Sandstone, deformation 165, 167
 biaxial testing 50, 52–54, 62
 bifurcation theory 12, 13–15, 16
 boundary values, and faulting 162
 boundary-element method 163
 brittle failure regime 10
 damage v. localization 15–16
 brittle fracture, types 61
 brittle materials 47, 59–61
 brittle/ductile
 - controls on transition 115
 - terminology 3
 bulk density, effect in fault zones 83
- Carboniferous Limestone, jointing 140
- Castlegate Formation (analogue reservoir) 90, 95
 experimental testing
 - lab methods 90
 - lab results
 - acoustic emission 91–92
 - macroscopic observations 92
 - stress/strain behaviour 90–91
 - microscopic methods 92–93
 - microscopic results
 - deformed 94–97
 - pristine 93–94
 - stereology 97–100
 - results discussed 100–101
- cataclasis 3
 cataclastic fault zones 19
 cataclastic flow 61
 cavitation 55
 cement bridges 229
 cementation
 - effect on faulting 110–111
 - modelling sandstone behaviour
 - method 111–114
 - results 114–115
- clays
 - effect in compaction experiments 93–94, 97
 - in gouge 82
 see also montmorillonite
 - coefficient of friction, and displacement 81, 82
 - cohesive bodies and strain testing
 - ductile v. brittle 59–61
 - lab tests 61–62
 - Beaucaire Marl 62–64
 - Red Vosges sandstone 65–69
 - siltite 64–65
 - micro to macro cracking 61
 - compaction, v. dilation 166
 - compaction bands 12, 15, 49, 61, 89–90
 - compaction studies in reservoir sandstone 90, 95
 - experimental testing
 - lab methods 90
 - lab results
 - acoustic emission 91–92
 - macroscopic observations 92
 - stress/strain behaviour 90–91
 - microscopic methods 92–93
 - microscopic results
 - deformed 94–97
 - pristine 93–94
 - stereology 97–100
 - results discussed 100–101
 - conductivity
 - in fractures 229
 - sensitivity to stress 229, 232
 - contractancy 59
crack interactions 9–10
non-interacting 10
propagation modes 12–13

Cretaceous sands of Provence deformation band fault network evolution 30
growth and propagation 29–30
modeling
Coulomb plasticity softening 36–37
mechanical context 33–36
model description 40–43
model evolution 31–33
model results 37–39

pore fluid pressure and compaction 30–33
single v. multiple strand interpretation
distribution 29
orientation 29
observations
distribution 24–25
orientation 27–28
thickness 25–27
critical point
and criticality
categorized 227
relation to failure 228
self-organized criticality (SOC) 227–228
self-organized sub-criticality (SOSC) 228
lithosphere studies
1/k scaling 231
directionality 232
induced seismicity 229–230
permeability and production rate 232–235
shear wave splitting 231
stress state 231
cross-joint development
early studies 124
exposures 125
modeling
methods 124–129
results 130
results discussed 138–139
summary 139–140
crystal plastic mechanisms 3
damage
defined 1, 2
localization compared 3, 15–16
macroscopic variables 8–9
microscopic concepts 9–11
parameter (D) 8–9
strain organization 7
deforrmation
impact on geomaterials 4
style 2
deforrmation bands see shear bands also compaction bands
deforrmation bands, and strain hardening 20
deforrmation bands, in Provence fault network evolution 30
growth and propagation 29–30
modelling
Coulomb plasticity softening 36–37
mechanical context 33–36
model description 40–43
model evolution 31–33
model results 37–39
pore fluid pressure and compaction 30–33
single v. multiple strand interpretation
distribution 29
orientation 29
observations
distribution 24–25
orientation 27–28
thickness 25–27
deforrmation in sandstones experiments 111
modeling 111–112
methods 112–114
results 114–115
modeling and experiments compared 115–117
fluid flow effects 117–119
grain size effects 117
summary 119–120
North Sea reservoirs
cementation effects 110–111
deep 107–108
porosity collapse 108–110
shallow 107
see also compaction studies
density, effect on strain localization 52, 59
diagenesis, relation to conductivity 229
dilatancy, effect in strain testing 50, 55
dilation, v. compaction 166
distributed grain-scale deformation 89
dolostone
deforrmation experiments 170
model deformation 171–172
drained testing 49–50, 56, 57
ductile deformation, damage parameter (D) 7, 8–9
ductile materials 47, 59–61
ductile/brittle
terms on transition 115
terminology 3
earthquakes see seismicity
effective elastic modulus 8
effective field 9
effective matrix 9
effective media theory (EMT) 9
effective stress, impact on modeling fracture-related flow 219–220
Ekofisk field (North Sea) 231
dinastic models, and faulting 162–163
eastic v. inelastic behaviour 90
eastic wave, velocity change 7
electrical conductivity 7
en echelon cracks 12
energy theory 12
extension bands 15
extension fracture 61
extensive-dilatancy anisotropy 231
fault mechanics 12–13
fracture sequence, non-clay fault zone 77
fracture-related flow
simulation
HYDRO-DDA system
DDA tool 212–213
HYDRO tool 211–212
model behaviour 213–216
model discussed 222–223
upsampling sensitivities 216–219
effective stress 219–220
friction 221–222
hydraulic gradient 220–221
introduction 209
upsampling 210
fractures 11–12
attributes 123
aperture 123
length 123–124
modelling J37, 138, 139
orientation and stress 123
planarity 123
modelling 137
spacing 123
modelling 130, 132
conductivity of 229
mechanics of localization 83–84
modelling tools 235
multiple orientations 124
numerical modelling
methods 124–129
results
aperture 137
geometry 130–137
length 138
results discussed 138–139
summary 139–140
reservoir engineering approach to 227
France see Bassin du Sud-Est; Beaucarne Marl;
Hostun RF sand; Red Vosges Sandstone
friction
and displacement 81, 82
impact on modelling fracture-related flow 221–222
frictional failure 231
frictional surfaces in modelling 166–167
geomechanical models
HYDRO-DDA system
DDA tool 212–213
HYDRO tool 211–212
model behaviour 213–216
model discussed 222–223
upsampling sensitivities 216–219
effective stress 219–220
friction 221–222
hydraulic gradient 220–221
linked to seismic anisotropy
model equations 205–206
model method 199–201
model results 201–204
model set-up 197–199
summary 204
granular body studies
48–49
equipment 50–51
Hostun sand test 51, 52
density 52
mean stress level 52–56
patterns of localization 56–58
slenderness ratio 52
summary 59
volumetric strains 58–59
mechanics of 83–84
phenomena
fractures 11–12
localization bands 12
shear band evolution 49–50
strain organization 7
techniques used 48–49
test types 49

Median Tectonic Line 144–145
internal structure
field observations 145–147
modelling 148
permeability studies 143
laboratory set-up 151
methods 148–149
results 150, 151–152
structure 152–154
along-fault variation 157–158
data limitations 158
deformation mechanisms 158–159
upsampling 158
zones 154–157
upsampling 158
deformation mechanisms 158–159
microcracks and microcracking 10, 16, 231
microscopy see SEM
Miocene, strike slip events 20
modelling cementation
sandstone behaviour
method 111–114
results 114–115
modelling cross joints
methods 124–129
results 130
results discussed 138–139
summary 139–140
modelling deformation band evolution
Coulomb plasticity softening 36–37
mechanical context 33–36
model evolution 31–33
model results 37–39
model description 40–43
modelling faults and poro-plastic deformation
calibration of properties 166–168
introduction 164–166
numerical representation 180–184
simulation methods 169–170
simulation results 170–177
plastic strain plots 172, 173
stress plots 172, 173, 174, 176
simulation results discussed 177–179
theory 179–180
modelling fractures
numerical modelling
methods 124–129

granular body studies 48–49
equipment 50–51
Hostun sand test 51, 52
density 52
mean stress level 52–56
patterns of localization 56–58
slenderness ratio 52
summary 59
volumetric strains 58–59
mechanics of 83–84
phenomena
fractures 11–12
localization bands 12
shear band evolution 49–50
strain organization 7
techniques used 48–49
test types 49

Median Tectonic Line 144–145
internal structure
field observations 145–147
modelling 148
permeability studies 143
laboratory set-up 151
methods 148–149
results 150, 151–152
structure 152–154
along-fault variation 157–158
data limitations 158
deformation mechanisms 158–159
upsampling 158
zones 154–157
upsampling 158
deformation mechanisms 158–159
microcracks and microcracking 10, 16, 231
microscopy see SEM
Miocene, strike slip events 20
modelling cementation
sandstone behaviour
method 111–114
results 114–115
modelling cross joints
methods 124–129
results 130
results discussed 138–139
summary 139–140
modelling deformation band evolution
Coulomb plasticity softening 36–37
mechanical context 33–36
model evolution 31–33
model results 37–39
model description 40–43
modelling faults and poro-plastic deformation
calibration of properties 166–168
introduction 164–166
numerical representation 180–184
simulation methods 169–170
simulation results 170–177
plastic strain plots 172, 173
stress plots 172, 173, 174, 176
simulation results discussed 177–179
theory 179–180
modelling fractures
numerical modelling
methods 124–129

granular body studies 48–49
equipment 50–51
Hostun sand test 51, 52
density 52
mean stress level 52–56
patterns of localization 56–58
slenderness ratio 52
summary 59
volumetric strains 58–59
mechanics of 83–84
phenomena
fractures 11–12
localization bands 12
shear band evolution 49–50
strain organization 7
techniques used 48–49
test types 49

Median Tectonic Line 144–145
internal structure
field observations 145–147
modelling 148
permeability studies 143
laboratory set-up 151
methods 148–149
results 150, 151–152
structure 152–154
along-fault variation 157–158
data limitations 158
deformation mechanisms 158–159
upsampling 158
zones 154–157
upsampling 158
deformation mechanisms 158–159
microcracks and microcracking 10, 16, 231
microscopy see SEM
Miocene, strike slip events 20
modelling cementation
sandstone behaviour
method 111–114
results 114–115
modelling cross joints
methods 124–129
results 130
results discussed 138–139
summary 139–140
modelling deformation band evolution
Coulomb plasticity softening 36–37
mechanical context 33–36
model evolution 31–33
model results 37–39
model description 40–43
modelling faults and poro-plastic deformation
calibration of properties 166–168
introduction 164–166
numerical representation 180–184
simulation methods 169–170
simulation results 170–177
plastic strain plots 172, 173
stress plots 172, 173, 174, 176
simulation results discussed 177–179
theory 179–180
modelling fractures
numerical modelling
methods 124–129
results
aperture 137
general 130–137
length 138
results discussed 138–139
summary 139–140
modelling fracture-related flow
HYDRO-DDA system
DDA tool 212–213
HYDRO tool 211–212
model behaviour 213–216
model discussed 222–223
upsampling sensitivities 216–219
effective stress 219–220
friction 221–222
hydraulic gradient 220–221
modelling seismic properties
equations 205–206
method 199–201
results 201–204
set-up 197–199
summary 204
montmorillonite, effect in gouge of 80, 81, 82
Nagano (Japan) see Median Tectonic Line
Nash Point, fracture arrays 188
noise in systems 227, 231
normal-move-out anisotropy (NMOA) 191
North Sea reservoir sandstones
fault timing 106
deep burial 107–108
shallow burial 107
modelling fracture arrays and seismic signatures
model description 205–206
model method 199–201
model results 201–204
model set-up 197–199
summary 204
Nappe, effect in gouge of 80, 81, 82
Napier fault line 152–154
North Sea reservoir sandstones
fault timing 106
deep burial 107–108
shallow burial 107
modelling fracture arrays and seismic signatures
model description 205–206
model method 199–201
model results 201–204
model set-up 197–199
summary 204
oilfields see reservoir rocks
Oligocene, rifting events 20
orthogonal fractures 124
modelling 130
Oughtibridge gannister 105–106
overconsolidation ratio 59, 61
P fractures 77, 78, 79, 80, 81, 82, 83
P shears 76, 85
permeability 7
calculation from HYDRO-DDA 211–212
modelling 143
and production rate 232–235
reduction at faults 19, 20
relation to frictional failure 231
permeability structure studies
laboratory set-up 151
methods 148–149
results 150, 151–152
Median Tectonic Line 152–154
along-fault variation 157–158
data limitations 158
deformation mechanisms 158–159
upsampling 158
zones 154–157
petroleum reservoirs see reservoir rocks
pink noise 227
plane strain
biaxial testing 49, 50, 51, 52–54, 62
simulation 172, 173
plasticity, and faulting 163
polygonal fractures 124
modelling 130–138
poro-plastic deformation
 calibration of properties 166–168
 introduction 164–166
 numerical representation 180–184
 simulation methods 169–170
 simulation results 170–177
 plastic strain plots 172, 173
 stress plots 172, 173, 174, 176
 simulation results discussed 177–179
 theory 179–180
porosity
collapse in North Sea reservoirs 108–110
fracture 231
reduction at faults 19, 20
pressure cycling tests for permeability structure
laboratory set-up 151
methods 148–149
results 150, 151–152
Median Tectonic Line studies 152–154
along-fault variation 157–158
data limitations 158
zones 154–157
pressure solution 3
Provence (France) see Bassin du Sud-Est
quartz cement
effect on faulting 110–111
modelling sandstone behaviour
method 111–114
results 114–115
R fractures 77, 78, 79, 80, 81, 82, 83
R shears 76, 85
Red Vosges Sandstone 48
strain testing 65–69
reservoir modelling
1/k scaling 236
data acquisition 236
fracture modelling tools 235–236
future work 236–237
reservoir rocks
analogue rock see Castlegate Formation
approach to fractures 227
critical point studies
1/k scaling 231
directionality 232
induced seismicity 229–230
permeability and production rate 232–235
shear wave splitting 230–231
stress state 231
extraction and effective stress 89
fault timing 106
deep burial 107–108
shallow burial 107
metastability 228
reservoir rocks (Continued)
modelling fracture arrays and seismic signatures
model description 205–206
model method 199–201
model results 201–204
model set-up 197–199
summary 204
rheology and stress, implications for faulting and fluid flow 105–106
Riedel fractures 77, 85
experimental study
monomineralic zones 78–79
polymineralic zones 80–83
Riedel shears 75, 76, 85
Rotliegendes, south North Sea 106, 107–108
sands in experimental studies
Cretaceous of Provence see deformation band study
Hostun RF Sand (France) 48
localization patterns 56, 60
strain testing 51
sandstone
deformation behaviour in North Sea reservoirs
cementation effects 110–111
deep 107–108
porosity collapse 108–110
shallower 107
deformation experiments 111
deformation modelling 111–112
methods 112–114
results 114–115
deformation modelling and experiments compared
115–117
fluid flow effects 117–119
grain size effects 117
summary 119–120
effects of rheology and stress, implications for fluid flow 105–106
strain testing in Red Vosges Sandstone 48, 65–69
see also reservoir rocks
sealing, on fault zones 19
seismic anisotropy
defined 194
factors causing 194–195
linked to geomechanical models
model equations 205–206
model method 199–201
model results 201–204
model set-up 197–199
summary 204
methods of fracture study
approaches 190–191
attributes
reflectivity 193–194
travel time 191–193
introduction 189–190
theory 190
modelling
approaches 195
basis 195–196
seismicity in reservoirs
induced 229–230
shear wave splitting 230–231
SEM microscopy
in compaction analysis, methods 92–93
results
deformed 97–100
pristine 93–94
stereology 97–100
results discussed 100–101
shear bands 12
evolution 49–50
experimental testing
Beaucaire Marl 48, 62–64
Hostun Sand 48, 51, 56, 60
Red Vosges Sandstone 48, 65–69
factors affecting formation 47–48
strain rate 13
under compression 15
shear fracture 61
shear localization, compressive stress 89
shear zones
in Berea Sandstone 165
displacement experiments 76–77
and fractures 76
shear-wave splitting (SWS) 191, 230–231
siltite, strain testing 64–65, 67, 68
slenderness ratio, effect on strain localization 52
slip lines and planes 163
stereology, quantitative 97–98
method 98–99
results 99–100
stereophotogrammetry 48, 52, 53, 64, 65, 68
strain in geomaterials 47–48
cohesive body studies
ductile v. brittle 59–61
lab tests
Beaucaire marl 62–64
Red Vosges sandstone 65–69
siltite 64–65
micro to macro cracking 61
granular body studies
equipment 50–51
Hostun sand test 51, 52
factors affecting results
density 52
mean stress level 52–56
slenderness ratio 52
patterns of localization 56–58
summary 59
volumetric strains 58–59
materials studies 48
shear bands evolution 49–50
techniques 48–49
test types 49
strain hardening 20, 166
stress
compressive 89
effective, and hydrocarbon extraction 89
simulation 172, 173, 174, 176
stress field and fractures 123, 124
stress intensity factor 12
stress and rheology, implications for faulting and fluid flow 105–106
stress state
calculation by boundary-element method 163
and faulting 161–162
stress/strain behaviour 90–91
stylolites 236
subcritical index and effect on fractures
modelling
 methods 129–130
 results 130, 132, 134
temperature, effect on cementation 111–112
thickness of layers and effect on fractures
modelling
 methods 129–130
 results 130, 131, 134, 135, 136
tomodensitometry 48–49
triaxial compression experiments
 experimental testing with Castlegate Formation 90, 95
lab methods 90
lab results
 acoustic emission 91–92
 macroscopic observations 92
 stress/strain behaviour 90–91
microscopic methods 92–93
microscopic results
 deformed 94–97
 pristine 93–94
 stereology 97–100
results discussed 100–101

introduction 76–77
monomineralic zones 78–79
polymineralic zones 80–83
triaxial strain testing 49, 54, 57, 60, 61
undrained strain testing 49–50, 55–56
upscaled in modelling 210
HYDRO-DDA system 216–219
sensitivities
 effective stress 219–220
 friction 221–222
 hydraulic gradient 220–221
Valhall field (North Sea) 231
volumetric strain variations 7
X-ray computed tomography 48–49
Y fractures 77, 78, 79, 80, 81, 82, 83
yield point 165
 post-yield strain 167, 168
Young’s modulus 8