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fluids moving from the slab to the mantle wedge 
commonly results in a type of isotopic disequi- 
libria between these elements in the erupted 
magmas, in which 238U/23~ is positively corre- 
lated with other tracers of the aqueous fluid 
component, such as Ba/Th. This type of disequi- 
librium is especially characteristic of intra- 
oceanic arcs (Elliott et al. 1997; Hawkesworth et 
al. 1997). The U-Th isotope disequilibria can be 
used to calculate the time lapse since fractiona- 
tion of U from Th during slab dehydration, pro- 
viding critical evidence for the timescales of melt 
migration (Hawkesworth et al. 1997). Results 
range from 90 ka for the Lesser Antilles (Turner 
et al. 1996) to 30-50 ka for the Tonga-Kermadec 
arc (Turner & Hawkesworth 1997) and c. 30 ka 
for the Mariana and Aleutian arcs (Elliott et al. 
1997; Turner et al. 1998). However, the longer 
time for the Lesser Antilles probably includes 50 
ka of magma residence in the crust, and the time 
for fluids and melt transport in the mantle seems 
to be consistently 30-50 ka. 226Ra is a shorter- 
lived isotope (half-life of 1662 years) in the same 
chain as 23~ Some arc magmas have excess 
226Ra relative to 23~ but, because of the short 
half-life, these cannot result from the same slab 
dehydration processes as U-Th disequilibria 
and are assumed to reflect magma fractionation 
processes (Hawkesworth et al. 1997). 

F o r m a t i o n  o f  b o n i n i t e s  

Boninites are rare, high-Mg, high-Si magmas of 
magmatic arcs. They dominantly occur in intra- 
oceanic arcs (Crawford et al. 1989). Their 
chemistry indicates that they were derived 
from depleted, harzburgitic sources in rela- 
tively shallow, lithospheric mantle that were 
subsequently enriched in incompatible 
elements. These incompatible elements were 
probably transported from subducting slabs as 
aqueous fluids derived from dehydration, as 
melts of sediment, and perhaps as partial melts 
of the slab crust (Crawford et al. 1989; Hickey- 
Vargas 1989; Taylor et al. 1994; B6dard 1999). 
The precise combination of circumstances that 
cause boninitic magmatism is debatable. Most 
authors appeal to processes in the evolution of 
subduction zones, whereas Macpherson & Hall 
(2001) suggested that heat convected by mantle 
plumes may have been critical in genesis of the 
Eocene Izu-Bon in-Mar iana boninites. 
Deschamps & Lallamand (2003) describe the 
tectonic setting of boninites from Pacific arcs 
and show that intersection of a back-arc 
spreading centre with either an arc or a trans- 
form plate boundary are the most favourable 
sites for their generation. 

O r i g i n  o f  s i l i c ic  m a g m a s  

Intra-oceanic arcs dominantly erupt mafic 
magmas (basalt and basaltic andesite). Recently, 
however, there has been increasing recognition 
that silicic magmas form a significant proportion 
of their output. Tamura & Tatsumi (2002) 
showed that the Izu-Bonin arc is composition- 
ally bimodal with maxima at both mafic and 
silicic compositions and a minimum at andesite, 
based on 1011 analyses from volcanic front vol- 
canoes. This is in striking contrast to the tra- 
ditional view of island arcs being dominated by 
andesite (e.g. Gill 1981). Analysis of ashes from 
cores from the Izu-Bonin and Mariana fore- and 
back-arcs provides further evidence for overall 
mafic-silicic bimodality in the arcs, or at least a 
high proportion of silicic magmas (Arculus et al. 
1995; Straub 1995). Mafic-silicic bimodality is 
also becoming very evident in individual vol- 
canoes of intra-oceanic arcs, and examples have 
been described from the Vanuatu arc (Robin et 
al. 1993; Monzier et al. 1994), the Tonga- 
Kermadec arc (Worthington et al. 1999; Smith et 
aL 2003) and the South Sandwich arc (Leat et al. 
2003). Furthermore, it is becoming clear that 
there is a common, but possibly not ubiquitous, 
association of these silicic and bimodal 
basalt-silicic magmas with calderas. The 
calderas are typically 3-7 km in diameter and, 
because they are typically flooded, completely 
submerged or ice filled (in the South Sandwich 
Islands), many have only recently been discov- 
ered. Examples include the Raoul, Macauley 
and Brothers volcanoes in the Kermadec arc 
(Lloyd et al. 1996; Worthington et al. 1999; 
Wright & Gamble 1999), the Ambrym and 
Kuwar volcanoes, Vanuatu arc (Robin et al. 
1993; Monzier et al. 1994), the South Sumisu and 
Myojin Knoll volcanoes, Izu-Bonin arc (Taylor 
et al. 1990; Fiske et al. 2001) and Southern Thule, 
South Sandwich arc (Smellie et al. 1998). 

The traditional view on the origin of silicic 
magmas in intra-oceanic arcs is that they are 
generated by fractional crystallization of more 
mafic magmas (e.g. Ewart & Hawkesworth 1987; 
Woodhead 1988; Pearce et al. 1995). Recently, 
several authors have questioned this, and argued 
that the silicic rocks are generated by partial 
melting of andesitic (Tamura & Tatsumi 2002) 
or basaltic (Leat et al. 2003; Smith et al. 2003) 
igneous rocks within the crust. The debate is 
critical to understanding the way in which arc 
crust, and ultimately continental crust, is 
formed. The arguments are geochemical and 
also based on volume relationships. Suyehiro et 
al. (1996) identified a mid-crustal layer some 6 
km thick in the Izu-Bonin arc that has a P-wave 
velocity of 6.0-6.3 km s -1. Larter et aL (2001) 
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reported a similar, but thinner, layer in the 
South Sandwich arc. Suyehiro et al. (1996) and 
Larter et al. (2001) interpreted these layers as 
being intermediate-silicic plutonic rocks. The 
intermediate (tonalitic) to silicic Tanzawa plu- 
tonic complex, Honshu, Japan, is thought to be 
the lateral correlative of the 6.0-6.3 km s -1 layer 
in the Izu-Bonin arc. Geochemical and experi- 
mental results suggest that the tonalite was 
generated by c. 59% partial melting of hydrous 
basalt in the lower crust of the arc (Kawate & 
Arima 1998; Nakajima & Arima 1998), con- 
sistent with the experimental evidence for 
generation of silicic magmas by partial melting 
of amphibolites of Rapp & Watson (1995). 

T h e  role  o f  s u b d u c t i o n  z o n e s  in the 

e v o l u t i o n  o f  c o n t i n e n t a l  crus t  

Mechanisms for the evolution of continental 
crust are critical for understanding the evolution 
of Earth and its geochemical reservoirs. Vol- 
canic arcs are traditionally thought to be the 
main sites of production of continental crust 
from marie progenitors, particularly in post- 
Archaean times, with intra-oceanic arcs being 
the first stage of the process. This view has been 
encouraged by the fact that the dominant com- 
position of lavas and pyroclastic deposits of 
many arcs (especially continental ones) is 
andesite (Gill 1981). Such andesite has a very 
similar major and trace element composition to 
bulk continental crust (Taylor & McLennan 
1985; Rudnick 1995). However, in calculations 
of the composition of crust produced in volcanic 
arcs, the composition of volcanic products is 
largely irrelevant - what matters is the composi- 
tion of magma added to the crust from the 
mantle, i.e. the composition of the magma flux 
across the Moho, and this is basaltic, not 
andesitic. Moreover, it is probably a high-Mg 
basalt containing some 12 wt% MgO (DeBari & 
Sleep 1991; Davidson 1996). If continental crust 
were derived from such basaltic magma gener- 
ated from the mantle wedge, the crust would 
need to have been very significantly changed in 
composition. Continental crust has higher abun- 
dances of Si, alkalis and incompatible trace 
elements, lower abundances of Mg, and higher 
ratios of light rare earth elements to heavy rare 
earth elements than volcanic arc basalts (Pearcy 
et al. 1990; Rudnick 1995). Processes invoked to 
account for the change in composition from 
basaltic arc crust to continental crust include: (i) 
partial melting of basalt to generate inter- 
mediate and silicic material, which is added to 
the middle and upper crust as plutons and lavas; 

(ii) return to the mantle ('delamination') from 
the lower crust of marie and ultramafic residue 
from such partial melting and ultramafic cumu- 
lates derived by fractional crystallization of 
marie magmas; and (iii) injection of alkali- and 
trace-element-rich magmas into the crust after 
the lithosphere has been thickened to the garnet 
stability zone, presumably during arc-arc and 
arc-continent collisions (Pearcy et al. 1990; 
DeBari & Sleep 1991; Rudnick 1995; Taylor & 
McLennan 1995; Holbrook et al. 1999; Tatsumi 
& Kogiso 2003). Clift et al. (2003) describes 
crustal evolution of intra-oceanic arc material 
during arc-continent collisions in Taiwan and 
Ireland. 

The detailed seismic velocity structure of the 
Izu-Bonin arc crust suggests that a 6 km-thick 
intermediate to silicic mid-crustal layer (P-wave 
velocity = 6.0-6.3 km s -1) and 8 km-thick 
ultramafic lower crust (P-wave velocity = 7.1-7.3 
km s -1) are present (Suyehiro et aL 1996). These 
observations are consistent with some of the 
ideas about crustal modification mentioned 
above. However, in the central Aleutians mid- 
crustal material with velocities of 6.0-6.3 km s -a 
is virtually absent, and velocities in the thick 
lower crust (up to 20 km) are generally slightly 
lower than in the Izu-Bonin arc (Holbrook et al. 
1999). A mid-crustal layer with velocities of 
6.0-6.3 km s -1 is present in the eastern Aleutian 
arc (Fliedner & Klemperer 1999) and the south- 
ern South Sandwich arc (Latter et al. 2001), but 
in both locations it is only about 2 km thick. The 
origin of such mid-crustal layers remains a 
matter of debate, and it has been suggested that 
the ultramafic lower crust to mantle transition is 
gradational in some places beneath arcs (Flied- 
n e r &  Klemperer 2000). Jull & Kelemen (2001) 
have calculated that some arc lower crustal 
lithologies have densities similar to, or greater 
than, the underlying mantle at pressures >0.8 
GPa and temperatures <800~ possibly making 
lowermost arc crust prone to delamination. 
However, for crust comprising typical arc 
lithologies, 0.8 GPa is equivalent to a depth of 
about 28 km, which is deeper than the base of 
the crust in many modern intra-oceanic arcs. 

H y d r o t h e r m a l  p r o c e s s e s  

Back-arc spreading centres of intra-oceanic arcs 
are well known as sites of hydrothermal activity. 
Hydrothermal phenomena include white and 
black smokers, and metallogenesis in both the 
Lau Basin and the Manus Basin (Fouquet et al. 
1991; Ishibasi & Urabe 1995; Kamenetsky et al. 
2001). Hydrothermal plumes have also been 
identified on the East Scotia Ridge (German et 
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al. 2000). In these back-arc settings, the 
hydrothermal  activity is associated with both 
basaltic and silicic volcanic centres (Ishibasi & 
Urabe 1995). 

There is increasing evidence, however, that 
submerged volcanoes along the volcanic fronts 
of intra-oceanic arcs are sites of considerable 
hydro the rmal  activity. The first systematic 
survey of any submerged arc for hydrothermal  
activity revealed that seven out of the 13 sub- 
marine volcanoes in the southern Kermadec arc 
had hydro the rmal  plumes (de Ronde  et al. 
2001). Baker  et al. (2003) present detailed obser- 
vations of the distribution of these plumes and 
the composit ion of their particulate fraction. 
Massoth et al. (2003) characterize the chemistry 
of the gaseous and fluid components  of the 
plumes and consider the evidence for a mag- 
matic contribution. Projection of this frequency 
of hydrothermal  activity to the global length of 
submerged arcs suggests that  hydro the rmal  
emissions from arcs may represent a significant 
part of the global budget. Moreover, hydrother-  
mal vent sites of arcs are much shallower than 
those of mid-ocean and back-arc ridges, suggest- 
ing that hydrothermal  emissions from arcs have 
a disproportionally high environmental  impact 
(de Ronde et al. 2001). Several volcanic front 
volcanoes in the Mariana and Izu-Bonin arcs 
are also hydrothermally active and are produc- 
ing metalliferous deposits (Sttiben et al. 1992; 
Tsunogai et al. 1994; Iizasa et al. 1999; Fiske et al. 
2001). Several of the hydrothermal vents in the 
Izu-Bonin arc (Myojin Knoll; Fiske et al. 2001) 
and the Kermadec  arc (Brothers  volcano; 
Wright & Gamble 1999; de Ronde et al. 2001) 
are within silicic calderas, and are associated 
with Au-rich metalliferous deposits. This raises 
the possibility that the calderas are formed by 
collapse into shallow magma chambers and that 
heat  from the magma chambers  drives the 
hydro the rmal  systems The metal l i ferous 
deposits may provide the closest analogues to 
Kuroko-type deposits (Iizasa et al. 1999). 

Conclusions 

�9 Nearly 40% of the global length of volcanic 
arc is situated on crust of oceanic derivation 
rather than continental  crust, amounting to 
some 17 000 km of intra-oceanic arcs. 

�9 Intra-oceanic  arcs are prime locations for 
studies of mantle flow, elemental fluxes from 
subducting slabs and mantle partial melting 
processes in subduction systems, because such 
processes are not obscured by cont inental  
crust. 

�9 There are very large variations in physical 

characteristics of intra-oceanic arcs, especially 
in convergence rates, ages, roughnesses and 
thicknesses of sediment cover of subducting 
slabs. 

�9 Convergence rates range from c. 20 to 240 mm 
a -1, and there are also large variations along 
the lengths of individual arcs. In the absence 
of geodetic GPS data, convergence rates are 
often poorly constrained because of uncer- 
tainties in rates of back-arc spreading. 

�9 Only one intra-oceanic arc (the Aleut ian arc) 
is built on normal ocean crust. The others are 
built on basements comprising a range of 
oceanic l i thologies,  including ocean crust 
formed at back-arc spreading centres, earlier 
intra-oceanic arcs, accret ionary complexes 
and oceanic plateaux. It is, therefore,  not  
possible to characterize typical intra-oceanic 
arc crust in terms of structure or thickness. 

�9 It is becoming increasingly evident that  silicic 
magmas are an important  component  of intra- 
oceanic arcs, of ten forming mafic-sil icic 
bimodal series associated with calderas, and in 
some cases forming mid-crustal layers with P- 
wave velocities of c. 6.0-6.3 km s -1. The silicic 
magmas may represent partial melts of the 
basaltic arc crust and, perhaps, the first stage 
in the development of continental  crust. 

�9 There  is increasing evidence that  intra- 
oceanic arc volcanoes are commonly sites of 
considerable hydrothermal  venting that may 
form a significant part of the global hydrother-  
real venting budge into the oceans. Silicic 
calderas in intra-oceanic arcs are commonly 
sites of Au-rich metalliferous deposits. 

We thank J. Turner and G. Westbrook for helpful 
reviews of the paper. 
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