Index

Note: Page references in italics refer to Figures and Tables

Aalenian unconformity 229
Albert rift 210
Altai belt, Siberia 97
analogue modelling (AM) 2, 3-4
Anatolian Fault system 262, 264, 265
Anatolian–Aegean block 264, 269, 271
Ando rotation 121
Anidriti di Burano Formation 9
anisotropic poro-elasticity (APE) 118, 130-1, 147, 148
Aquitaine Basin 236
Åre Formation 298
Armorican Massif 227
artificial neural network (ANN) technology 124
axial magma chamber (AMC) 251-2, 253-9

Baikal Rift system (BRS) 191–2
Baikal Rift Zone, Siberia 85, 96, 97, 99, 210
Bárðarbunga volcano 136
Base Permian unconformity (BPU) 23, 27
bedding-parallel slip 54
Biot’s theory 324-5
Black Forest Massif 236, 239
block mosaic 59
Bohemian Massif 239
borehole slotter data (BS) 108-9
Bouguer formula 238
Bray Fault 227
Buarguzin Basin 191
Byerlee’s law 213
Calcare Massiccio Formation 9, 14, 15-16, 15
Calcarei con Selce Formation 8
Caledonian belt 24–5
CASMO 102, 114
Castel Santa Maria Fault 20
Central African Rift system (CARS) 193
Central Andes, finite strain in 64–6, 65
Central Apennine Fault System (CAFS) 9, 15, 16, 19
Central Baikal rift zone (CBRZ) 191–2
Chablis code 246
Chablis model 226
channel flow model 212
Cheshire Basin 34
Cleaver Bank High, Dutch 23–36
exploration history 23-4
fault systems 28–31
folding 31–2
regional tectonic setting 24–7
Caledonian belt 24–5
Devonian–Early Carboniferous tectonics 25
fault reactivations 26–7
Middle and Late Carboniferous tectonics 25–6
structural model 32–5
Upper Carboniferous seismic facies 28
cohesion factor 76
competent layers 286
Complex Elastic Screen 252
compression fracture 77
computed tomography (CT) 3
Confidence Hills, California 178
Conoco Orbital Vibrator (COV) 146
constant fault-slip 54
Counting Deviation 83–5, 84, 99
counting net 80
counting value 80
cross-correlation coefficient (CCC) 124
cross-correlation function (CCF) 124
data set (pattern) 78
Dead Sea Fault system 262, 264
Dead Sea Rift 97
Death Valley fault zone, California 178
defformation gradient matrix 72
DepthCon2000 54
DIANA 314, 318, 320–1, 327
direct inversion methods 75
Dnieper–Donetz Basin 219
Döonna Terrace 153, 155
downhole Orbital Vibrator (DOV) 146
drilling-induced fractures (DIF) 106–8
DTM (Digital Terrain Model) 13
East African Rift system (EARS) 192–3
Enola, Arkansas, earthquakes 119
erosion law 217–19
erosional forcing of basin dynamics 209–22
erosion and basin evolution 210–12
erosion law and 217–19
 evolution of topography and crust 217
numerical model 212–13, 221–2
post-rift extension and compression 219–20
rheological assumptions 221–2
extended Bingham body 265, 266
tenseive–dilatancy anisotropy (EDA) 118
fast Fourier Transform (FFT) 253
Fast Lagrangian Analysis of Continua family (FLAC) 221–2
fault branches 49, 51
fault–horizon intersections 41-2
fault–horizon networks 39-56
building 40, 40, 41-4, 42-3
- fault–horizon intersections 41-2
- fault tip points 42-3
- branch lines 43-4
data sets 41
fault branches 49, 51
fault–slip vector field 41, 44-5
lateral slip variation 44
slip–based diagnostics 44
vertical variation of slip 45
validating structural models 40-1
see also unfaulting methods
fault–slip analysis 76
fault–slip vector field 41, 44-5
fault tip points 42-3
finite element (FE) techniques 2-3
finite strain 59-73
- bulk strain and structural features 68-70
calculation 71-3
- Central Andes and the Jura Mountains 60-1
estimation 64-8
- Central Andes 64-6, 65
Neuchtel Jura 66-8, 67, 68
past 61
- plan view restoration techniques 59-60
predicting lower order structures 70-1
- triangular decomposition method 62-3, 62, 63
validating structural restorations 70
FLAC (Fast Lagrangian Analysis of Continua) 210, 212, 221-2, 243
Flatey–Húsavík Fault 146
Galestri Formation 8
Garn formation 298
geofluid reservoirs, Apennines, Italy 7-20
- geological framework 7-10
structural analysis 10-17
GeoSec 54
Global Positioning System (GPS) 101, 149, 263
Global Strain Rate Map 112
GOCAD 314, 316-18, 317, 318, 327
Great Glen Fault 25, 27
grid search methods 75
Grimsvötn volcano 136, 139
Gutenberg–Richter relationship 130
Hainan Island, China 119, 124, 128
Halten Terrace 153, 154
Haltenbanken, Norway, in situ stress prediction on 295-309
- hanging wall deformation models 54
Hekla volcano 142-3, 144
Húsavík–Flatey Fault (HFF), Iceland 133
- hybrid tension fractures 77
Iberian Basin 236
Ile formation 298
Improved Right Dihedron method 80-5, 81, 94, 98, 99
in situ stress prediction on Haltenbanken, Norway 295-309
- fluid pressure and in situ stress 299-300
geological setting 296-8, 297
geomechanical properties 306-7
Haltenbanken area 298-300
implications for top seal integrity in high fluid pressure regions 307-8
lateral boundary constraints 307
model configuration 306
model results 302-5
- fault–block scale 303-4
- reservoir scale 304-5
- sub–basin scale 303
modelling approach 300-2
- boundary conditions 301-2
- input and constraints 300-1
- petroleum geology 298-9
- sedimentology 298-9
inclined shear 54
initial fraction angle 76
integrated 3D geomechanical modelling 313-27
- boundary conditions 318-19
- GOCAD 314, 316-18, 317, 318, 327
- initial loading conditions 319
- interface elements 318
- meshing 318
- properties 318
- reservoir depletion 321
results 321-27
- Roswinkel field 314-16, 314, 315
- technique 316-21
- stress magnitude/application 320-1
tectonic stress 319
Interandean zone 64
intracontinental rift systems 181-95
intra–Norian unconformity 227
iterative algorithms 75
Izmit earthquake (1999) 112
Jacobian matrix 72
Katla volcano 142-3, 144
Kephalonia Fault 262
Kimmerian rifling 28, 30
Kirsch equations 112
Klakk Fault Complex 300, 306
Koyna Dam, India 131
La Tourne–La Ferrière Fault 67
Lake Baikal 191, 192
Le Piatenette Fault 20
leak–off tests (LOT) 299-300, 300
least square minimization 75
lithospheric folding 243-6
INDEX

331

lithospheric thermal cooling, simulations of 231–3
Locace 54

Massif Central 227
Maurits Formation 28
Melke Formation 298
Michigan Basin 237
Mid–Atlantic Ridge 117, 125, 131, 135, 139, 145, 147, 148
mid–ocean ridges (MOR) 182
Mohr–Coulomb material model 318, 321
Molasse Basin 239
Monte Alpi Fault System (MAFS) 9, 13–14
Monte Le Scalette–La Pintura Fault 16, 19
Monte San Vicino–Colfiorito–Norcia areas (Central Apennines) Fault 14
Møre Basin 296, 298
Møre Trøndelag Fault Complex 306
Muglad–Abu Gabra rift 193

Neuchâtel Jura, finite strain 66–8, 67, 68
Nordland Ridge 151–67
North Anatolian Fault 266
North Palm Springs Earthquake, California (1986) 119
Not Formation 298
numerical modelling (NM) 2, 3, 4–5
NUVEL–1A 261, 264

Oak Ridge Fault, California 177–8, 177

palaeobathymetry 55
palaeostress reconstruction 76
palinspastic reconstruction 2
Pannonian Basin 210
parabolic diffusion equation 212
Paravoz code 210, 212, 221, 246
Paris Basin, vertical movements 225–46
 crustal structure 227
 end–Cretaceous/Cenozoic lithospheric folding 243–6
 lithospheric folding 243
 mechanical model of folding 243
 model set–up and numerical experiments 243–4
geological framework 227
long term thermal subsidence history 231–9
 fit of the tectonic subsidence curves 233–6
 quantifying Cenozoic uplift 237–9
 simulations of lithospheric thermal cooling 231–3
 thermal evolution of the lithosphere 231
major stratigraphic cycles/geological history 227–30
Aalenian to Tithonian 227–9
Berriasian to late Aptian 229–30
late Aptian to Turonian 230

Scythian to Tarcian 227
Turonian to Recent 230
temporal/spatial scales of crustal tectonics
 during middle Jurassic 239–43
 application 240–2
 relative vertical displacement 239–40
3D stratigraphic database 226–7

PATCHWORK 275
PATRAN 265
Pijnacker oil field 178
pop–up structures 169–78
 low density zones 175
 model set–up 170–1
 recording and interpretation 171
 scaling theory and experimental material 170
 stress field development 175–6
 surface observations and tomograph results 171–3
topographic change 174–5
preserved thickness map 32, 36
pseudo–3D models 286

ramp–flat thrust models, hanging wall accommodation styles in 4, 197–206
 applications 203–4
 experimental method 198–200
 boundary conditions 200
 dynamic scaling 198–9
 rheology of model materials 199–200
 set–up 198
 experimental verification 200–3
 fault–bend folding 202
 kink–band nucleation and migration 202–3
 quasi–rigid accommodation 200–1
 viscous wedge flow 201, 202
 limitations 204–5
tectonic stress to gravity stress ratio 205–6
Räts–Traena Basin 153
Relative Tectonics 240
Restore 54

Revfallet Fault, Norway 151–67
 analogue modelling 155–60, 161–3
 fault–parallel cover–graben 156, 157
 model configurations 155–7
 regional setting 152–4
 structural development 163–6
structural geometry 154–5
Riedel shears 170, 171–3, 175–6, 177
Right Dihedron method 75, 78, 80, 94, 96–7
rim synclines 176
Ror Formation 298
Roswinkel gas field 316, 321
Rotational Optimization 75, 78, 85–91, 94, 96–7, 96, 99

S. Scolastica Fault 20
Saalian unconformity 34
INDEX

Saar–Nahe Basin 227
San Andreas Fault 105, 133, 140
Satellite Laser Ranging (SLR) 101, 263
scan area data 12, 13, 14, 15, 18, 19
scan line data 12, 13, 14, 16, 17
Scisti silicei Formation 8
section balancing methods 54
segment linkage 181–95
analogue material and scaling 182–4
fracture coalescence 188–91
fracture initiation and propagation 185–7
narrow-mode failure 186
wide-mode failure 186–7
limitations of the model 191
modelling procedure/evolution 184–5
natural refit systems cf 191–3

shear fractures 77
shear–wave splitting in Iceland
applications 147
background 118
evolution of fluid–saturated cracks 118
source of scatter in a critical crust 130–1
1996–1999 125–7
automatic measurements 123–4
scatter of polarizations 127–8
temporal changes 119–20
scatter of time–delays 128–30
visual measurements 121–3
development of stress–monitoring sites 145–7
interpretation 143–5
precursory changes immediately before
earthquakes 143
recent earthquake, not stress–forecast 145
temporal changes before earthquakes/volcanic
eruptions 135–48
1996 136–9
1997 and 1998 139–41
1999 142–3
slickenside 86–7
Smørbukk–Heidrun Terrace 153, 154
Smørbukk–Revfallet Transfer 153
Sole Pit Basin 239
South Iceland Lowland (SIL) 135
South of Iceland Seismic Zone (SISZ) 117
Southern North Sea Carboniferous Basin
(SNSCB) 23–36
Spekk Formation 298
‘spoon-shaped’ faults 34
Strabo–Plini strike–slip fault system 262, 271
stress inversion, tectonic 75–99
applications 94–9
Counting Deviation 83–5, 84, 99
data selection/subtypes 78–80
data types 77–8
Improved Right Dihedron method 80–5, 81,
94, 98, 99
inversion of earthquake focal mechanism data
94–6
methodologies 76–94
Rotational Optimization 75, 78, 85–91, 94,
96–7, 96, 99
stress and strain relations 76
stress ratio estimation 82–3
Stress Regime Index 75, 94
compression/tension fractures as palaeostress
indicator 83
Stress Regime Index 75, 94
stress–monitoring sites (SMSs) 147, 148
stylolites seams 77
Sutsey, island of 136
tectonic stress inversion 75–99
tension fractures 77
TENSOR program 2
tectonic stress inversion using 75–99
3D analogue models 151–67
3D discrete kinematic modelling of
evolutional/compressional tectonics
285–93
mathematical description 286–8
bisector plane 286
curvilinear displacement 287
displacement step of a neutral surface node
287
reconstruction of upper layers 288
sliding support 286
volume reconstruction 288
geological applications 288–92
basin geometry 289
boundary effects 289
local volume variation 291–2
normal fault geometry 292
transport direction 289
3D discrete kinematic modelling of sedimentary
basin deformation 275–93
principles of the model 276–7
bisectrix 276
curvilinear displacement 276
rebuild edges 277
sliding support 276
step of the displacement of neutral line
node 277
3D correction 277
validation and results 277–81
3D finite element model of Eastern
Mediterranean 261–72
assumptions and boundary conditions 264–5
element properties and rheology 265–6
geometry and discretization 263–4
geophysical, geological and geodetic
observations 263
linear Newtonian viscosity 266–8
non–linear viscosity 268–71
software and solving procedure 265
tectonic development 261–3
INDEX

3D GIS–CAD (Geographic Information Systems and Computer Aided Design) 13

3D seismic data, overlapping spreading centre on the East Pacific Rise 251–9

3D unfolding 60

3DEC 285

3DMove 54

Tilje Formation 298

Tjörnes Fracture Zone 146

Tofte Formation 298

transextension 94

transtension 94

triangular decomposition method 62–3, 62, 63

Trøndelag Platform 153, 154

Turkish Dilatancy Projects 118

UDEC 275

Umbria-Marche succession 9

unfaulting methods 40, 40, 45–6
cf with other methods 54–5
extensibility 55–6
extrapolation function 48, 48
first data set 46–8, 46, 47
limitations 54
orientation of slip extrapolation plane 48
second dataset 49–53
strain diagnostics 50–2
displacement maps 52–3
sequence of unfaulting 48–9
usability 55

UNFOLD 67, 275

Variscan collision model 26

Vatnajökull eruption 136–9, 144–5, 148

vertical shear 54

Very Long Baseline Interferometry (VLBI) 101

Vìges Massif 239

Vøring Basin 296, 297

Vøring Margin 153

Vosges Massifs 236, 239

weighted mean tensor 94

Wessex Basin 236

Westphalian Coal measures 28

World Stress Map (WSM) 2, 75, 91–3, 99, 101–15, 103, 263
application of tectonic stress data 109–14
hydrocarbon reservoir management 113–14
stress/velocity in the eastern Mediterranean region 109–12, 110, 111
stability of underground openings 112–13, 113
borehole slotter data (BS) 108–9
database and internet access 102–3, 103
drilling-induced fractures (DIF) 106–8
new quality ranking schemes 104–6
outlook 114–15

Zeoppritz equations 253

ZYCOR 317